Copied to
clipboard

G = D12:22D4order 192 = 26·3

10th semidirect product of D12 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:22D4, C6.182- 1+4, C22:Q8:8S3, C3:5(D4:6D4), C4:C4.189D6, D6.21(C2xD4), C4.112(S3xD4), Dic3:D4:25C2, C4.D12:25C2, C12.235(C2xD4), (C2xQ8).150D6, C22:C4.16D6, Dic3:5D4:26C2, C6.77(C22xD4), Dic3:5(C4oD4), D6.D4:18C2, C23.9D6:25C2, (C2xC6).175C24, D6:C4.23C22, (C22xC4).253D6, Dic3:Q8:14C2, (C2xC12).503C23, (C6xQ8).107C22, (C2xD12).149C22, Dic3:C4.27C22, C4:Dic3.215C22, C22.196(S3xC23), C23.129(C22xS3), (C22xC6).203C23, (C22xS3).197C23, (C22xC12).255C22, C2.19(Q8.15D6), (C2xDic3).234C23, (C2xDic6).294C22, (C4xDic3).105C22, C6.D4.116C22, (S3xC4:C4):26C2, C2.50(C2xS3xD4), (C4xC3:D4):23C2, C2.49(S3xC4oD4), (C2xC4oD12):24C2, (C2xQ8:3S3):8C2, C6.161(C2xC4oD4), (S3xC2xC4).95C22, (C3xC22:Q8):11C2, (C2xC4).48(C22xS3), (C3xC4:C4).158C22, (C2xC3:D4).123C22, (C3xC22:C4).30C22, SmallGroup(192,1190)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:22D4
C1C3C6C2xC6C22xS3S3xC2xC4S3xC4:C4 — D12:22D4
C3C2xC6 — D12:22D4
C1C22C22:Q8

Generators and relations for D12:22D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, cac-1=dad=a5, cbc-1=a4b, dbd=a10b, dcd=c-1 >

Subgroups: 752 in 292 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, Dic6, C4xS3, D12, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xQ8, C22xS3, C22xS3, C22xC6, C2xC4:C4, C4xD4, C4:D4, C22:Q8, C22:Q8, C22.D4, C4:Q8, C2xC4oD4, C4xDic3, Dic3:C4, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C3xC4:C4, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, C4oD12, Q8:3S3, C2xC3:D4, C2xC3:D4, C22xC12, C6xQ8, D4:6D4, C23.9D6, Dic3:D4, S3xC4:C4, Dic3:5D4, D6.D4, C4.D12, C4xC3:D4, Dic3:Q8, C3xC22:Q8, C2xC4oD12, C2xQ8:3S3, D12:22D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, 2- 1+4, S3xD4, S3xC23, D4:6D4, C2xS3xD4, Q8.15D6, S3xC4oD4, D12:22D4

Smallest permutation representation of D12:22D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 96)(2 95)(3 94)(4 93)(5 92)(6 91)(7 90)(8 89)(9 88)(10 87)(11 86)(12 85)(13 71)(14 70)(15 69)(16 68)(17 67)(18 66)(19 65)(20 64)(21 63)(22 62)(23 61)(24 72)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)(49 75)(50 74)(51 73)(52 84)(53 83)(54 82)(55 81)(56 80)(57 79)(58 78)(59 77)(60 76)
(1 72 45 76)(2 65 46 81)(3 70 47 74)(4 63 48 79)(5 68 37 84)(6 61 38 77)(7 66 39 82)(8 71 40 75)(9 64 41 80)(10 69 42 73)(11 62 43 78)(12 67 44 83)(13 29 49 85)(14 34 50 90)(15 27 51 95)(16 32 52 88)(17 25 53 93)(18 30 54 86)(19 35 55 91)(20 28 56 96)(21 33 57 89)(22 26 58 94)(23 31 59 87)(24 36 60 92)
(2 6)(3 11)(5 9)(8 12)(13 55)(14 60)(15 53)(16 58)(17 51)(18 56)(19 49)(20 54)(21 59)(22 52)(23 57)(24 50)(25 27)(26 32)(28 30)(29 35)(31 33)(34 36)(37 41)(38 46)(40 44)(43 47)(61 81)(62 74)(63 79)(64 84)(65 77)(66 82)(67 75)(68 80)(69 73)(70 78)(71 83)(72 76)(85 91)(86 96)(87 89)(88 94)(90 92)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,71)(14,70)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)(21,63)(22,62)(23,61)(24,72)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,75)(50,74)(51,73)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76), (1,72,45,76)(2,65,46,81)(3,70,47,74)(4,63,48,79)(5,68,37,84)(6,61,38,77)(7,66,39,82)(8,71,40,75)(9,64,41,80)(10,69,42,73)(11,62,43,78)(12,67,44,83)(13,29,49,85)(14,34,50,90)(15,27,51,95)(16,32,52,88)(17,25,53,93)(18,30,54,86)(19,35,55,91)(20,28,56,96)(21,33,57,89)(22,26,58,94)(23,31,59,87)(24,36,60,92), (2,6)(3,11)(5,9)(8,12)(13,55)(14,60)(15,53)(16,58)(17,51)(18,56)(19,49)(20,54)(21,59)(22,52)(23,57)(24,50)(25,27)(26,32)(28,30)(29,35)(31,33)(34,36)(37,41)(38,46)(40,44)(43,47)(61,81)(62,74)(63,79)(64,84)(65,77)(66,82)(67,75)(68,80)(69,73)(70,78)(71,83)(72,76)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,71)(14,70)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)(21,63)(22,62)(23,61)(24,72)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,75)(50,74)(51,73)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76), (1,72,45,76)(2,65,46,81)(3,70,47,74)(4,63,48,79)(5,68,37,84)(6,61,38,77)(7,66,39,82)(8,71,40,75)(9,64,41,80)(10,69,42,73)(11,62,43,78)(12,67,44,83)(13,29,49,85)(14,34,50,90)(15,27,51,95)(16,32,52,88)(17,25,53,93)(18,30,54,86)(19,35,55,91)(20,28,56,96)(21,33,57,89)(22,26,58,94)(23,31,59,87)(24,36,60,92), (2,6)(3,11)(5,9)(8,12)(13,55)(14,60)(15,53)(16,58)(17,51)(18,56)(19,49)(20,54)(21,59)(22,52)(23,57)(24,50)(25,27)(26,32)(28,30)(29,35)(31,33)(34,36)(37,41)(38,46)(40,44)(43,47)(61,81)(62,74)(63,79)(64,84)(65,77)(66,82)(67,75)(68,80)(69,73)(70,78)(71,83)(72,76)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,96),(2,95),(3,94),(4,93),(5,92),(6,91),(7,90),(8,89),(9,88),(10,87),(11,86),(12,85),(13,71),(14,70),(15,69),(16,68),(17,67),(18,66),(19,65),(20,64),(21,63),(22,62),(23,61),(24,72),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37),(49,75),(50,74),(51,73),(52,84),(53,83),(54,82),(55,81),(56,80),(57,79),(58,78),(59,77),(60,76)], [(1,72,45,76),(2,65,46,81),(3,70,47,74),(4,63,48,79),(5,68,37,84),(6,61,38,77),(7,66,39,82),(8,71,40,75),(9,64,41,80),(10,69,42,73),(11,62,43,78),(12,67,44,83),(13,29,49,85),(14,34,50,90),(15,27,51,95),(16,32,52,88),(17,25,53,93),(18,30,54,86),(19,35,55,91),(20,28,56,96),(21,33,57,89),(22,26,58,94),(23,31,59,87),(24,36,60,92)], [(2,6),(3,11),(5,9),(8,12),(13,55),(14,60),(15,53),(16,58),(17,51),(18,56),(19,49),(20,54),(21,59),(22,52),(23,57),(24,50),(25,27),(26,32),(28,30),(29,35),(31,33),(34,36),(37,41),(38,46),(40,44),(43,47),(61,81),(62,74),(63,79),(64,84),(65,77),(66,82),(67,75),(68,80),(69,73),(70,78),(71,83),(72,76),(85,91),(86,96),(87,89),(88,94),(90,92),(93,95)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O6A6B6C6D6E12A12B12C12D12E12F12G12H
order12222222223444444444444444666661212121212121212
size1111466661222222444466661212122224444448888

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4oD42- 1+4S3xD4Q8.15D6S3xC4oD4
kernelD12:22D4C23.9D6Dic3:D4S3xC4:C4Dic3:5D4D6.D4C4.D12C4xC3:D4Dic3:Q8C3xC22:Q8C2xC4oD12C2xQ8:3S3C22:Q8D12C22:C4C4:C4C22xC4C2xQ8Dic3C6C4C2C2
# reps12221211111114231141222

Matrix representation of D12:22D4 in GL6(F13)

1200000
0120000
000100
0012100
000080
000055
,
1200000
0120000
0011200
0001200
000083
000055
,
12100000
510000
0001200
0012000
0000120
0000012
,
100000
8120000
000100
001000
000010
00001212

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,8,5,0,0,0,0,0,5],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,8,5,0,0,0,0,3,5],[12,5,0,0,0,0,10,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,8,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

D12:22D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{22}D_4
% in TeX

G:=Group("D12:22D4");
// GroupNames label

G:=SmallGroup(192,1190);
// by ID

G=gap.SmallGroup(192,1190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,1571,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^5,c*b*c^-1=a^4*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<