Copied to
clipboard

G = C2×D4○D12order 192 = 26·3

Direct product of C2 and D4○D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4○D12, C6.12C25, D6.6C24, D1212C23, C12.47C24, C622+ 1+4, Dic614C23, Dic3.7C24, C4○D420D6, (C2×D4)⋊50D6, (C2×Q8)⋊42D6, (C4×S3)⋊2C23, (C2×C12)⋊7C23, D49(C22×S3), (C22×C4)⋊36D6, C3⋊D45C23, (C2×C6).3C24, Q89(C22×S3), (C3×Q8)⋊9C23, (C6×D4)⋊53C22, (S3×D4)⋊12C22, (C3×D4)⋊10C23, C2.13(S3×C24), C4.62(S3×C23), (C6×Q8)⋊46C22, C32(C2×2+ 1+4), C4○D1225C22, (C2×D12)⋊64C22, (C22×D12)⋊24C2, (C22×S3)⋊5C23, (S3×C23)⋊18C22, (C22×C12)⋊28C22, Q83S313C22, (C2×Dic6)⋊78C22, C22.56(S3×C23), (C22×C6).248C23, C23.224(C22×S3), (C2×Dic3).299C23, (C2×S3×D4)⋊28C2, (C2×C4○D4)⋊17S3, (C6×C4○D4)⋊14C2, (S3×C2×C4)⋊34C22, (C2×C4)⋊6(C22×S3), (C2×C4○D12)⋊37C2, (C2×Q83S3)⋊21C2, (C3×C4○D4)⋊20C22, (C2×C3⋊D4)⋊54C22, SmallGroup(192,1521)

Series: Derived Chief Lower central Upper central

C1C6 — C2×D4○D12
C1C3C6D6C22×S3S3×C23C2×S3×D4 — C2×D4○D12
C3C6 — C2×D4○D12
C1C22C2×C4○D4

Generators and relations for C2×D4○D12
 G = < a,b,c,d,e | a2=b4=c2=e2=1, d6=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d5 >

Subgroups: 2184 in 898 conjugacy classes, 447 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×S3, C22×C6, C22×D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, S3×D4, Q83S3, C2×C3⋊D4, C22×C12, C6×D4, C6×Q8, C3×C4○D4, S3×C23, C2×2+ 1+4, C22×D12, C2×C4○D12, C2×S3×D4, C2×Q83S3, D4○D12, C6×C4○D4, C2×D4○D12
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, C25, S3×C23, C2×2+ 1+4, D4○D12, S3×C24, C2×D4○D12

Smallest permutation representation of C2×D4○D12
On 48 points
Generators in S48
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 25)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 37)
(1 29 7 35)(2 30 8 36)(3 31 9 25)(4 32 10 26)(5 33 11 27)(6 34 12 28)(13 47 19 41)(14 48 20 42)(15 37 21 43)(16 38 22 44)(17 39 23 45)(18 40 24 46)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 38)(26 37)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)(33 42)(34 41)(35 40)(36 39)

G:=sub<Sym(48)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37), (1,29,7,35)(2,30,8,36)(3,31,9,25)(4,32,10,26)(5,33,11,27)(6,34,12,28)(13,47,19,41)(14,48,20,42)(15,37,21,43)(16,38,22,44)(17,39,23,45)(18,40,24,46), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,38)(26,37)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37), (1,29,7,35)(2,30,8,36)(3,31,9,25)(4,32,10,26)(5,33,11,27)(6,34,12,28)(13,47,19,41)(14,48,20,42)(15,37,21,43)(16,38,22,44)(17,39,23,45)(18,40,24,46), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,38)(26,37)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,25),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,37)], [(1,29,7,35),(2,30,8,36),(3,31,9,25),(4,32,10,26),(5,33,11,27),(6,34,12,28),(13,47,19,41),(14,48,20,42),(15,37,21,43),(16,38,22,44),(17,39,23,45),(18,40,24,46)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,38),(26,37),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43),(33,42),(34,41),(35,40),(36,39)]])

54 conjugacy classes

class 1 2A2B2C2D···2I2J···2U 3 4A···4H4I4J4K4L6A6B6C6D···6I12A12B12C12D12E···12J
order12222···22···234···444446666···61212121212···12
size11112···26···622···266662224···422224···4

54 irreducible representations

dim11111112222244
type++++++++++++++
imageC1C2C2C2C2C2C2S3D6D6D6D62+ 1+4D4○D12
kernelC2×D4○D12C22×D12C2×C4○D12C2×S3×D4C2×Q83S3D4○D12C6×C4○D4C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C6C2
# reps133621611331824

Matrix representation of C2×D4○D12 in GL6(𝔽13)

1200000
0120000
001000
000100
000010
000001
,
100000
010000
0010700
006300
003636
00710710
,
100000
010000
0010771
0063126
003636
00710710
,
010000
12120000
0071000
0031000
0000710
0000310
,
0120000
1200000
000102
001020
0000012
0000120

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,6,3,7,0,0,7,3,6,10,0,0,0,0,3,7,0,0,0,0,6,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,6,3,7,0,0,7,3,6,10,0,0,7,12,3,7,0,0,1,6,6,10],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,7,3,0,0,0,0,10,10,0,0,0,0,0,0,7,3,0,0,0,0,10,10],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,12,0,0,2,0,12,0] >;

C2×D4○D12 in GAP, Magma, Sage, TeX

C_2\times D_4\circ D_{12}
% in TeX

G:=Group("C2xD4oD12");
// GroupNames label

G:=SmallGroup(192,1521);
// by ID

G=gap.SmallGroup(192,1521);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,297,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^5>;
// generators/relations

׿
×
𝔽