Copied to
clipboard

G = M4(2):24D6order 192 = 26·3

8th semidirect product of M4(2) and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2):24D6, C23.25D12, C4oD12:8C4, (C2xD12):16C4, (C2xC4).55D12, C4.30(D6:C4), (C2xDic6):16C4, D12.27(C2xC4), (C2xC12).178D4, C12.446(C2xD4), D12:C4:13C2, (C6xM4(2)):23C2, (C2xM4(2)):15S3, C12.70(C22xC4), Dic6.28(C2xC4), (C4xDic3):4C22, C22.17(C2xD12), (C22xC6).107D4, (C22xC4).162D6, C12.29(C22:C4), (C2xC12).420C23, C22.29(D6:C4), C3:3(C42:C22), C4oD12.43C22, C23.26D6:17C2, (C3xM4(2)):36C22, (C22xC12).193C22, C4.55(S3xC2xC4), (C2xC4).56(C4xS3), C2.35(C2xD6:C4), (C2xC6).33(C2xD4), C4.137(C2xC3:D4), C6.63(C2xC22:C4), (C2xC12).113(C2xC4), (C2xC4oD12).15C2, (C2xC4).258(C3:D4), (C2xC6).23(C22:C4), (C2xC4).513(C22xS3), SmallGroup(192,698)

Series: Derived Chief Lower central Upper central

C1C12 — M4(2):24D6
C1C3C6C12C2xC12C4oD12C2xC4oD12 — M4(2):24D6
C3C6C12 — M4(2):24D6
C1C4C22xC4C2xM4(2)

Generators and relations for M4(2):24D6
 G = < a,b,c,d | a8=b2=c6=d2=1, bab=cac-1=a5, dad=a3b, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 440 in 154 conjugacy classes, 59 normal (41 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic6, Dic6, C4xS3, D12, D12, C2xDic3, C3:D4, C2xC12, C22xS3, C22xC6, C4wrC2, C42:C2, C2xM4(2), C2xC4oD4, C4xDic3, C4:Dic3, C6.D4, C2xC24, C3xM4(2), C3xM4(2), C2xDic6, S3xC2xC4, C2xD12, C4oD12, C4oD12, C2xC3:D4, C22xC12, C42:C22, D12:C4, C23.26D6, C6xM4(2), C2xC4oD12, M4(2):24D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, D12, C3:D4, C22xS3, C2xC22:C4, D6:C4, S3xC2xC4, C2xD12, C2xC3:D4, C42:C22, C2xD6:C4, M4(2):24D6

Smallest permutation representation of M4(2):24D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 11)(2 16)(3 13)(4 10)(5 15)(6 12)(7 9)(8 14)(17 45)(18 42)(19 47)(20 44)(21 41)(22 46)(23 43)(24 48)(25 35)(26 40)(27 37)(28 34)(29 39)(30 36)(31 33)(32 38)
(1 45 28)(2 42 29 6 46 25)(3 47 30)(4 44 31 8 48 27)(5 41 32)(7 43 26)(9 23 40)(10 20 33 14 24 37)(11 17 34)(12 22 35 16 18 39)(13 19 36)(15 21 38)
(1 28)(2 33)(3 30)(4 35)(5 32)(6 37)(7 26)(8 39)(9 36)(10 29)(11 38)(12 31)(13 40)(14 25)(15 34)(16 27)(17 21)(18 48)(19 23)(20 42)(22 44)(24 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,11)(2,16)(3,13)(4,10)(5,15)(6,12)(7,9)(8,14)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(25,35)(26,40)(27,37)(28,34)(29,39)(30,36)(31,33)(32,38), (1,45,28)(2,42,29,6,46,25)(3,47,30)(4,44,31,8,48,27)(5,41,32)(7,43,26)(9,23,40)(10,20,33,14,24,37)(11,17,34)(12,22,35,16,18,39)(13,19,36)(15,21,38), (1,28)(2,33)(3,30)(4,35)(5,32)(6,37)(7,26)(8,39)(9,36)(10,29)(11,38)(12,31)(13,40)(14,25)(15,34)(16,27)(17,21)(18,48)(19,23)(20,42)(22,44)(24,46)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,11)(2,16)(3,13)(4,10)(5,15)(6,12)(7,9)(8,14)(17,45)(18,42)(19,47)(20,44)(21,41)(22,46)(23,43)(24,48)(25,35)(26,40)(27,37)(28,34)(29,39)(30,36)(31,33)(32,38), (1,45,28)(2,42,29,6,46,25)(3,47,30)(4,44,31,8,48,27)(5,41,32)(7,43,26)(9,23,40)(10,20,33,14,24,37)(11,17,34)(12,22,35,16,18,39)(13,19,36)(15,21,38), (1,28)(2,33)(3,30)(4,35)(5,32)(6,37)(7,26)(8,39)(9,36)(10,29)(11,38)(12,31)(13,40)(14,25)(15,34)(16,27)(17,21)(18,48)(19,23)(20,42)(22,44)(24,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,11),(2,16),(3,13),(4,10),(5,15),(6,12),(7,9),(8,14),(17,45),(18,42),(19,47),(20,44),(21,41),(22,46),(23,43),(24,48),(25,35),(26,40),(27,37),(28,34),(29,39),(30,36),(31,33),(32,38)], [(1,45,28),(2,42,29,6,46,25),(3,47,30),(4,44,31,8,48,27),(5,41,32),(7,43,26),(9,23,40),(10,20,33,14,24,37),(11,17,34),(12,22,35,16,18,39),(13,19,36),(15,21,38)], [(1,28),(2,33),(3,30),(4,35),(5,32),(6,37),(7,26),(8,39),(9,36),(10,29),(11,38),(12,31),(13,40),(14,25),(15,34),(16,27),(17,21),(18,48),(19,23),(20,42),(22,44),(24,46)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F···4K6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order12222223444444···466666888812121212121224···24
size11222121221122212···122224444442222444···4

42 irreducible representations

dim1111111122222222244
type++++++++++++
imageC1C2C2C2C2C4C4C4S3D4D4D6D6C4xS3D12C3:D4D12C42:C22M4(2):24D6
kernelM4(2):24D6D12:C4C23.26D6C6xM4(2)C2xC4oD12C2xDic6C2xD12C4oD12C2xM4(2)C2xC12C22xC6M4(2)C22xC4C2xC4C2xC4C2xC4C23C3C1
# reps1411122413121424224

Matrix representation of M4(2):24D6 in GL6(F73)

7200000
0720000
0000027
0000460
0007200
001000
,
100000
010000
0004600
0027000
0000027
0000460
,
110000
7200000
001000
000100
0000720
0000072
,
72720000
010000
001000
0007200
0000072
0000720

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,46,0,0,0,0,27,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,27,0,0,0,0,46,0,0,0,0,0,0,0,0,46,0,0,0,0,27,0],[1,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;

M4(2):24D6 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_{24}D_6
% in TeX

G:=Group("M4(2):24D6");
// GroupNames label

G:=SmallGroup(192,698);
// by ID

G=gap.SmallGroup(192,698);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,387,58,136,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=d^2=1,b*a*b=c*a*c^-1=a^5,d*a*d=a^3*b,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<