direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C8⋊D6, C24⋊2C23, D12⋊5C23, D24⋊9C22, M4(2)⋊17D6, C12.58C24, Dic6⋊5C23, C23.57D12, (C2×C8)⋊4D6, C8⋊2(C22×S3), (C2×D24)⋊14C2, C6⋊1(C8⋊C22), (C2×C24)⋊7C22, C4.48(C2×D12), (C2×C4).57D12, C24⋊C2⋊8C22, (C2×C12).203D4, C12.238(C2×D4), (C6×M4(2))⋊3C2, (C2×M4(2))⋊3S3, C4.55(S3×C23), C6.25(C22×D4), C4○D12⋊18C22, (C22×D12)⋊17C2, (C2×D12)⋊49C22, (C22×C4).281D6, C22.73(C2×D12), (C22×C6).118D4, C2.27(C22×D12), (C2×C12).511C23, (C2×Dic6)⋊57C22, (C3×M4(2))⋊19C22, (C22×C12).266C22, C3⋊1(C2×C8⋊C22), (C2×C24⋊C2)⋊4C2, (C2×C6).62(C2×D4), (C2×C4○D12)⋊26C2, (C2×C4).223(C22×S3), SmallGroup(192,1305)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C8⋊D6
G = < a,b,c,d | a2=b8=c6=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >
Subgroups: 984 in 298 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C24⋊C2, D24, C2×C24, C3×M4(2), C2×Dic6, S3×C2×C4, C2×D12, C2×D12, C2×D12, C4○D12, C4○D12, C2×C3⋊D4, C22×C12, S3×C23, C2×C8⋊C22, C2×C24⋊C2, C2×D24, C8⋊D6, C6×M4(2), C22×D12, C2×C4○D12, C2×C8⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, D12, C22×S3, C8⋊C22, C22×D4, C2×D12, S3×C23, C2×C8⋊C22, C8⋊D6, C22×D12, C2×C8⋊D6
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 25 15 35 42)(2 18 26 12 36 47)(3 23 27 9 37 44)(4 20 28 14 38 41)(5 17 29 11 39 46)(6 22 30 16 40 43)(7 19 31 13 33 48)(8 24 32 10 34 45)
(1 42)(2 41)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 32)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 40)
G:=sub<Sym(48)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40)>;
G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40) );
G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,25,15,35,42),(2,18,26,12,36,47),(3,23,27,9,37,44),(4,20,28,14,38,41),(5,17,29,11,39,46),(6,22,30,16,40,43),(7,19,31,13,33,48),(8,24,32,10,34,45)], [(1,42),(2,41),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,32),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,40)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | ··· | 12 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D6 | D12 | D12 | C8⋊C22 | C8⋊D6 |
kernel | C2×C8⋊D6 | C2×C24⋊C2 | C2×D24 | C8⋊D6 | C6×M4(2) | C22×D12 | C2×C4○D12 | C2×M4(2) | C2×C12 | C22×C6 | C2×C8 | M4(2) | C22×C4 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 4 | 1 | 6 | 2 | 2 | 4 |
Matrix representation of C2×C8⋊D6 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 66 | 14 | 0 | 0 |
0 | 0 | 59 | 7 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 59 |
0 | 0 | 0 | 0 | 66 | 66 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,7,66,0,0,0,0,59,66] >;
C2×C8⋊D6 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes D_6
% in TeX
G:=Group("C2xC8:D6");
// GroupNames label
G:=SmallGroup(192,1305);
// by ID
G=gap.SmallGroup(192,1305);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,297,80,1684,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^6=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations