Copied to
clipboard

G = D1224D4order 192 = 26·3

2nd semidirect product of D12 and D4 acting through Inn(D12)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D1224D4, C42.109D6, C6.592- 1+4, (C4×D4)⋊13S3, D63D48C2, (C4×D12)⋊29C2, (D4×C12)⋊15C2, C122(C4○D4), C43(C4○D12), C32(D46D4), C4⋊C4.316D6, D6.15(C2×D4), C4.140(S3×D4), C122Q824C2, (C2×D4).214D6, C23.9D66C2, C12.346(C2×D4), (C2×C6).95C24, C6.50(C22×D4), D6⋊C4.98C22, C22⋊C4.110D6, C2.16(Q8○D12), (C22×C4).224D6, C12.48D420C2, (C4×C12).152C22, (C2×C12).783C23, (C6×D4).257C22, (C2×D12).287C22, Dic3⋊C4.65C22, C4⋊Dic3.199C22, C22.120(S3×C23), C23.105(C22×S3), (C22×C6).165C23, (C2×Dic3).41C23, (C22×S3).173C23, (C22×C12).107C22, (C2×Dic6).239C22, C6.D4.12C22, (S3×C4⋊C4)⋊15C2, C2.23(C2×S3×D4), (C2×C4○D12)⋊8C2, C6.42(C2×C4○D4), C2.46(C2×C4○D12), (S3×C2×C4).64C22, (C3×C4⋊C4).326C22, (C2×C4).579(C22×S3), (C2×C3⋊D4).113C22, (C3×C22⋊C4).122C22, SmallGroup(192,1110)

Series: Derived Chief Lower central Upper central

C1C2×C6 — D1224D4
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — D1224D4
C3C2×C6 — D1224D4
C1C22C4×D4

Generators and relations for D1224D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 728 in 292 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, C2×C3⋊D4, C22×C12, C6×D4, D46D4, C122Q8, C4×D12, C23.9D6, S3×C4⋊C4, C12.48D4, D63D4, D4×C12, C2×C4○D12, D1224D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, 2- 1+4, C4○D12, S3×D4, S3×C23, D46D4, C2×C4○D12, C2×S3×D4, Q8○D12, D1224D4

Smallest permutation representation of D1224D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 17)(14 16)(18 24)(19 23)(20 22)(25 27)(28 36)(29 35)(30 34)(31 33)(37 43)(38 42)(39 41)(44 48)(45 47)(49 55)(50 54)(51 53)(56 60)(57 59)(61 71)(62 70)(63 69)(64 68)(65 67)(73 79)(74 78)(75 77)(80 84)(81 83)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 20 31 81)(2 21 32 82)(3 22 33 83)(4 23 34 84)(5 24 35 73)(6 13 36 74)(7 14 25 75)(8 15 26 76)(9 16 27 77)(10 17 28 78)(11 18 29 79)(12 19 30 80)(37 88 55 63)(38 89 56 64)(39 90 57 65)(40 91 58 66)(41 92 59 67)(42 93 60 68)(43 94 49 69)(44 95 50 70)(45 96 51 71)(46 85 52 72)(47 86 53 61)(48 87 54 62)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 85)(12 86)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 37)(22 38)(23 39)(24 40)(25 68)(26 69)(27 70)(28 71)(29 72)(30 61)(31 62)(32 63)(33 64)(34 65)(35 66)(36 67)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(57 84)(58 73)(59 74)(60 75)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,27)(28,36)(29,35)(30,34)(31,33)(37,43)(38,42)(39,41)(44,48)(45,47)(49,55)(50,54)(51,53)(56,60)(57,59)(61,71)(62,70)(63,69)(64,68)(65,67)(73,79)(74,78)(75,77)(80,84)(81,83)(86,96)(87,95)(88,94)(89,93)(90,92), (1,20,31,81)(2,21,32,82)(3,22,33,83)(4,23,34,84)(5,24,35,73)(6,13,36,74)(7,14,25,75)(8,15,26,76)(9,16,27,77)(10,17,28,78)(11,18,29,79)(12,19,30,80)(37,88,55,63)(38,89,56,64)(39,90,57,65)(40,91,58,66)(41,92,59,67)(42,93,60,68)(43,94,49,69)(44,95,50,70)(45,96,51,71)(46,85,52,72)(47,86,53,61)(48,87,54,62), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,68)(26,69)(27,70)(28,71)(29,72)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,73)(59,74)(60,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,27)(28,36)(29,35)(30,34)(31,33)(37,43)(38,42)(39,41)(44,48)(45,47)(49,55)(50,54)(51,53)(56,60)(57,59)(61,71)(62,70)(63,69)(64,68)(65,67)(73,79)(74,78)(75,77)(80,84)(81,83)(86,96)(87,95)(88,94)(89,93)(90,92), (1,20,31,81)(2,21,32,82)(3,22,33,83)(4,23,34,84)(5,24,35,73)(6,13,36,74)(7,14,25,75)(8,15,26,76)(9,16,27,77)(10,17,28,78)(11,18,29,79)(12,19,30,80)(37,88,55,63)(38,89,56,64)(39,90,57,65)(40,91,58,66)(41,92,59,67)(42,93,60,68)(43,94,49,69)(44,95,50,70)(45,96,51,71)(46,85,52,72)(47,86,53,61)(48,87,54,62), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,68)(26,69)(27,70)(28,71)(29,72)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,73)(59,74)(60,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,17),(14,16),(18,24),(19,23),(20,22),(25,27),(28,36),(29,35),(30,34),(31,33),(37,43),(38,42),(39,41),(44,48),(45,47),(49,55),(50,54),(51,53),(56,60),(57,59),(61,71),(62,70),(63,69),(64,68),(65,67),(73,79),(74,78),(75,77),(80,84),(81,83),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,20,31,81),(2,21,32,82),(3,22,33,83),(4,23,34,84),(5,24,35,73),(6,13,36,74),(7,14,25,75),(8,15,26,76),(9,16,27,77),(10,17,28,78),(11,18,29,79),(12,19,30,80),(37,88,55,63),(38,89,56,64),(39,90,57,65),(40,91,58,66),(41,92,59,67),(42,93,60,68),(43,94,49,69),(44,95,50,70),(45,96,51,71),(46,85,52,72),(47,86,53,61),(48,87,54,62)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,85),(12,86),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,37),(22,38),(23,39),(24,40),(25,68),(26,69),(27,70),(28,71),(29,72),(30,61),(31,62),(32,63),(33,64),(34,65),(35,66),(36,67),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(57,84),(58,73),(59,74),(60,75)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A···4H4I4J···4O6A6B6C6D6E6F6G12A12B12C12D12E···12L
order122222222234···444···466666661212121212···12
size111144666622···2412···12222444422224···4

45 irreducible representations

dim111111111222222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2S3D4D6D6D6D6D6C4○D4C4○D122- 1+4S3×D4Q8○D12
kernelD1224D4C122Q8C4×D12C23.9D6S3×C4⋊C4C12.48D4D63D4D4×C12C2×C4○D12C4×D4D12C42C22⋊C4C4⋊C4C22×C4C2×D4C12C4C6C4C2
# reps111422212141212148122

Matrix representation of D1224D4 in GL4(𝔽13) generated by

31000
3600
00120
00012
,
121200
0100
00120
00012
,
12000
01200
00911
0024
,
2400
91100
0024
00911
G:=sub<GL(4,GF(13))| [3,3,0,0,10,6,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,12,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,9,2,0,0,11,4],[2,9,0,0,4,11,0,0,0,0,2,9,0,0,4,11] >;

D1224D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{24}D_4
% in TeX

G:=Group("D12:24D4");
// GroupNames label

G:=SmallGroup(192,1110);
// by ID

G=gap.SmallGroup(192,1110);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,100,675,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽