extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×Dic3) = C42⋊4Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).1(C2xDic3) | 192,100 |
(C2×C4).2(C2×Dic3) = C42.Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).2(C2xDic3) | 192,101 |
(C2×C4).3(C2×Dic3) = C42⋊5Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).3(C2xDic3) | 192,104 |
(C2×C4).4(C2×Dic3) = C42.3Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).4(C2xDic3) | 192,107 |
(C2×C4).5(C2×Dic3) = (C6×D4).16C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).5(C2xDic3) | 192,796 |
(C2×C4).6(C2×Dic3) = (C6×D4)⋊10C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).6(C2xDic3) | 192,799 |
(C2×C4).7(C2×Dic3) = (C6×D4)⋊C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).7(C2xDic3) | 192,96 |
(C2×C4).8(C2×Dic3) = (C6×Q8)⋊C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).8(C2xDic3) | 192,97 |
(C2×C4).9(C2×Dic3) = C42.7D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).9(C2xDic3) | 192,99 |
(C2×C4).10(C2×Dic3) = C42.8D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).10(C2xDic3) | 192,102 |
(C2×C4).11(C2×Dic3) = C12.9D8 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).11(C2xDic3) | 192,103 |
(C2×C4).12(C2×Dic3) = C12.5Q16 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).12(C2xDic3) | 192,105 |
(C2×C4).13(C2×Dic3) = C12.10D8 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).13(C2xDic3) | 192,106 |
(C2×C4).14(C2×Dic3) = M4(2)⋊Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).14(C2xDic3) | 192,113 |
(C2×C4).15(C2×Dic3) = M4(2)⋊4Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).15(C2xDic3) | 192,118 |
(C2×C4).16(C2×Dic3) = C24.19D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).16(C2xDic3) | 192,510 |
(C2×C4).17(C2×Dic3) = C4⋊C4⋊5Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).17(C2xDic3) | 192,539 |
(C2×C4).18(C2×Dic3) = C4⋊C4⋊6Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).18(C2xDic3) | 192,543 |
(C2×C4).19(C2×Dic3) = C42.187D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).19(C2xDic3) | 192,559 |
(C2×C4).20(C2×Dic3) = C12⋊3M4(2) | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).20(C2xDic3) | 192,571 |
(C2×C4).21(C2×Dic3) = C23.52D12 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).21(C2xDic3) | 192,680 |
(C2×C4).22(C2×Dic3) = C23.9Dic6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).22(C2xDic3) | 192,684 |
(C2×C4).23(C2×Dic3) = (C6×D4)⋊6C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).23(C2xDic3) | 192,774 |
(C2×C4).24(C2×Dic3) = C2×C12.D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).24(C2xDic3) | 192,775 |
(C2×C4).25(C2×Dic3) = (C6×Q8)⋊6C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).25(C2xDic3) | 192,784 |
(C2×C4).26(C2×Dic3) = C2×C12.10D4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).26(C2xDic3) | 192,785 |
(C2×C4).27(C2×Dic3) = (C6×Q8)⋊7C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).27(C2xDic3) | 192,788 |
(C2×C4).28(C2×Dic3) = C4○D4⋊3Dic3 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).28(C2xDic3) | 192,791 |
(C2×C4).29(C2×Dic3) = (C6×D4)⋊9C4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).29(C2xDic3) | 192,795 |
(C2×C4).30(C2×Dic3) = C6.422- 1+4 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).30(C2xDic3) | 192,1371 |
(C2×C4).31(C2×Dic3) = C12.76C24 | φ: C2×Dic3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).31(C2xDic3) | 192,1378 |
(C2×C4).32(C2×Dic3) = Dic3×C4⋊C4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).32(C2xDic3) | 192,533 |
(C2×C4).33(C2×Dic3) = D4×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).33(C2xDic3) | 192,569 |
(C2×C4).34(C2×Dic3) = C42.47D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).34(C2xDic3) | 192,570 |
(C2×C4).35(C2×Dic3) = C12.C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).35(C2xDic3) | 192,88 |
(C2×C4).36(C2×Dic3) = C12.2C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).36(C2xDic3) | 192,91 |
(C2×C4).37(C2×Dic3) = C12.57D8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).37(C2xDic3) | 192,93 |
(C2×C4).38(C2×Dic3) = C12.26Q16 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).38(C2xDic3) | 192,94 |
(C2×C4).39(C2×Dic3) = C12.3C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).39(C2xDic3) | 192,114 |
(C2×C4).40(C2×Dic3) = C12.4C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).40(C2xDic3) | 192,117 |
(C2×C4).41(C2×Dic3) = C24.99D4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).41(C2xDic3) | 192,120 |
(C2×C4).42(C2×Dic3) = C12.5C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).42(C2xDic3) | 192,556 |
(C2×C4).43(C2×Dic3) = C42.43D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).43(C2xDic3) | 192,558 |
(C2×C4).44(C2×Dic3) = Q8×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).44(C2xDic3) | 192,582 |
(C2×C4).45(C2×Dic3) = C42.210D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).45(C2xDic3) | 192,583 |
(C2×C4).46(C2×Dic3) = Dic3×M4(2) | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).46(C2xDic3) | 192,676 |
(C2×C4).47(C2×Dic3) = C12.7C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).47(C2xDic3) | 192,681 |
(C2×C4).48(C2×Dic3) = C24.78C23 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).48(C2xDic3) | 192,699 |
(C2×C4).49(C2×Dic3) = C2×D4⋊Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).49(C2xDic3) | 192,773 |
(C2×C4).50(C2×Dic3) = C24.30D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).50(C2xDic3) | 192,780 |
(C2×C4).51(C2×Dic3) = C2×Q8⋊2Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).51(C2xDic3) | 192,783 |
(C2×C4).52(C2×Dic3) = C4○D4⋊4Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).52(C2xDic3) | 192,792 |
(C2×C4).53(C2×Dic3) = (C6×D4).11C4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).53(C2xDic3) | 192,793 |
(C2×C4).54(C2×Dic3) = C2×Q8⋊3Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).54(C2xDic3) | 192,794 |
(C2×C4).55(C2×Dic3) = C2×Q8×Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).55(C2xDic3) | 192,1370 |
(C2×C4).56(C2×Dic3) = C2×D4.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).56(C2xDic3) | 192,1377 |
(C2×C4).57(C2×Dic3) = C4×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).57(C2xDic3) | 192,481 |
(C2×C4).58(C2×Dic3) = C12⋊7M4(2) | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).58(C2xDic3) | 192,483 |
(C2×C4).59(C2×Dic3) = C42.270D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).59(C2xDic3) | 192,485 |
(C2×C4).60(C2×Dic3) = C42⋊6Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).60(C2xDic3) | 192,491 |
(C2×C4).61(C2×Dic3) = C4×C4⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).61(C2xDic3) | 192,493 |
(C2×C4).62(C2×Dic3) = C42⋊11Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).62(C2xDic3) | 192,495 |
(C2×C4).63(C2×Dic3) = C42⋊7Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).63(C2xDic3) | 192,496 |
(C2×C4).64(C2×Dic3) = C24.6Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).64(C2xDic3) | 192,766 |
(C2×C4).65(C2×Dic3) = C4×C6.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).65(C2xDic3) | 192,768 |
(C2×C4).66(C2×Dic3) = C24.74D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).66(C2xDic3) | 192,770 |
(C2×C4).67(C2×Dic3) = C24⋊2C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).67(C2xDic3) | 192,16 |
(C2×C4).68(C2×Dic3) = C24⋊1C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).68(C2xDic3) | 192,17 |
(C2×C4).69(C2×Dic3) = C24.1C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).69(C2xDic3) | 192,22 |
(C2×C4).70(C2×Dic3) = C12.15C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).70(C2xDic3) | 192,25 |
(C2×C4).71(C2×Dic3) = C12.8C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).71(C2xDic3) | 192,82 |
(C2×C4).72(C2×Dic3) = C42⋊3Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).72(C2xDic3) | 192,90 |
(C2×C4).73(C2×Dic3) = C12.9C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).73(C2xDic3) | 192,110 |
(C2×C4).74(C2×Dic3) = C12.10C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).74(C2xDic3) | 192,111 |
(C2×C4).75(C2×Dic3) = C24.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).75(C2xDic3) | 192,112 |
(C2×C4).76(C2×Dic3) = (C2×C24)⋊C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).76(C2xDic3) | 192,115 |
(C2×C4).77(C2×Dic3) = C12.20C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).77(C2xDic3) | 192,116 |
(C2×C4).78(C2×Dic3) = C12.21C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).78(C2xDic3) | 192,119 |
(C2×C4).79(C2×Dic3) = C42⋊10Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).79(C2xDic3) | 192,494 |
(C2×C4).80(C2×Dic3) = C12.12C42 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).80(C2xDic3) | 192,660 |
(C2×C4).81(C2×Dic3) = C2×C8⋊Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).81(C2xDic3) | 192,663 |
(C2×C4).82(C2×Dic3) = C2×C24⋊1C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).82(C2xDic3) | 192,664 |
(C2×C4).83(C2×Dic3) = C23.27D12 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).83(C2xDic3) | 192,665 |
(C2×C4).84(C2×Dic3) = C2×C24.C4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).84(C2xDic3) | 192,666 |
(C2×C4).85(C2×Dic3) = C24.75D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).85(C2xDic3) | 192,771 |
(C2×C4).86(C2×Dic3) = C22×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).86(C2xDic3) | 192,1340 |
(C2×C4).87(C2×Dic3) = C8×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).87(C2xDic3) | 192,12 |
(C2×C4).88(C2×Dic3) = C42.279D6 | central extension (φ=1) | 192 | | (C2xC4).88(C2xDic3) | 192,13 |
(C2×C4).89(C2×Dic3) = C24⋊C8 | central extension (φ=1) | 192 | | (C2xC4).89(C2xDic3) | 192,14 |
(C2×C4).90(C2×Dic3) = C4×C3⋊C16 | central extension (φ=1) | 192 | | (C2xC4).90(C2xDic3) | 192,19 |
(C2×C4).91(C2×Dic3) = C24.C8 | central extension (φ=1) | 192 | | (C2xC4).91(C2xDic3) | 192,20 |
(C2×C4).92(C2×Dic3) = C12⋊C16 | central extension (φ=1) | 192 | | (C2xC4).92(C2xDic3) | 192,21 |
(C2×C4).93(C2×Dic3) = C24.98D4 | central extension (φ=1) | 96 | | (C2xC4).93(C2xDic3) | 192,108 |
(C2×C4).94(C2×Dic3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | (C2xC4).94(C2xDic3) | 192,109 |
(C2×C4).95(C2×Dic3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).95(C2xDic3) | 192,479 |
(C2×C4).96(C2×Dic3) = C2×C42.S3 | central extension (φ=1) | 192 | | (C2xC4).96(C2xDic3) | 192,480 |
(C2×C4).97(C2×Dic3) = C2×C12⋊C8 | central extension (φ=1) | 192 | | (C2xC4).97(C2xDic3) | 192,482 |
(C2×C4).98(C2×Dic3) = C42.285D6 | central extension (φ=1) | 96 | | (C2xC4).98(C2xDic3) | 192,484 |
(C2×C4).99(C2×Dic3) = Dic3×C42 | central extension (φ=1) | 192 | | (C2xC4).99(C2xDic3) | 192,489 |
(C2×C4).100(C2×Dic3) = C22×C3⋊C16 | central extension (φ=1) | 192 | | (C2xC4).100(C2xDic3) | 192,655 |
(C2×C4).101(C2×Dic3) = C2×C12.C8 | central extension (φ=1) | 96 | | (C2xC4).101(C2xDic3) | 192,656 |
(C2×C4).102(C2×Dic3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | (C2xC4).102(C2xDic3) | 192,657 |
(C2×C4).103(C2×Dic3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | (C2xC4).103(C2xDic3) | 192,659 |
(C2×C4).104(C2×Dic3) = C2×C12.55D4 | central extension (φ=1) | 96 | | (C2xC4).104(C2xDic3) | 192,765 |
(C2×C4).105(C2×Dic3) = C23×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).105(C2xDic3) | 192,1339 |