# Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C2×Dic3

Direct product G=N×Q with N=C2×C4 and Q=C2×Dic3
dρLabelID
Dic3×C22×C4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C2×C4 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C2×Dic3) = C2×C23.7D6φ: C2×Dic3/C6C4 ⊆ Aut C2×C448(C2xC4):1(C2xDic3)192,778
(C2×C4)⋊2(C2×Dic3) = C24.58D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4):2(C2xDic3)192,509
(C2×C4)⋊3(C2×Dic3) = C24.29D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4):3(C2xDic3)192,779
(C2×C4)⋊4(C2×Dic3) = C24.49D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C448(C2xC4):4(C2xDic3)192,1357
(C2×C4)⋊5(C2×Dic3) = C6.1442+ 1+4φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4):5(C2xDic3)192,1386
(C2×C4)⋊6(C2×Dic3) = Dic3×C22⋊C4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4):6(C2xDic3)192,500
(C2×C4)⋊7(C2×Dic3) = C2×D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4):7(C2xDic3)192,1354
(C2×C4)⋊8(C2×Dic3) = Dic3×C4○D4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4):8(C2xDic3)192,1385
(C2×C4)⋊9(C2×Dic3) = C2×C6.C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4):9(C2xDic3)192,767
(C2×C4)⋊10(C2×Dic3) = C22×C4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4):10(C2xDic3)192,1344
(C2×C4)⋊11(C2×Dic3) = C2×C23.26D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4):11(C2xDic3)192,1345

Non-split extensions G=N.Q with N=C2×C4 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C2×Dic3) = C424Dic3φ: C2×Dic3/C6C4 ⊆ Aut C2×C4484(C2xC4).1(C2xDic3)192,100
(C2×C4).2(C2×Dic3) = C42.Dic3φ: C2×Dic3/C6C4 ⊆ Aut C2×C4484(C2xC4).2(C2xDic3)192,101
(C2×C4).3(C2×Dic3) = C425Dic3φ: C2×Dic3/C6C4 ⊆ Aut C2×C4244(C2xC4).3(C2xDic3)192,104
(C2×C4).4(C2×Dic3) = C42.3Dic3φ: C2×Dic3/C6C4 ⊆ Aut C2×C4484(C2xC4).4(C2xDic3)192,107
(C2×C4).5(C2×Dic3) = (C6×D4).16C4φ: C2×Dic3/C6C4 ⊆ Aut C2×C4484(C2xC4).5(C2xDic3)192,796
(C2×C4).6(C2×Dic3) = (C6×D4)⋊10C4φ: C2×Dic3/C6C4 ⊆ Aut C2×C4484(C2xC4).6(C2xDic3)192,799
(C2×C4).7(C2×Dic3) = (C6×D4)⋊C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C448(C2xC4).7(C2xDic3)192,96
(C2×C4).8(C2×Dic3) = (C6×Q8)⋊C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C448(C2xC4).8(C2xDic3)192,97
(C2×C4).9(C2×Dic3) = C42.7D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).9(C2xDic3)192,99
(C2×C4).10(C2×Dic3) = C42.8D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).10(C2xDic3)192,102
(C2×C4).11(C2×Dic3) = C12.9D8φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).11(C2xDic3)192,103
(C2×C4).12(C2×Dic3) = C12.5Q16φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).12(C2xDic3)192,105
(C2×C4).13(C2×Dic3) = C12.10D8φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).13(C2xDic3)192,106
(C2×C4).14(C2×Dic3) = M4(2)⋊Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).14(C2xDic3)192,113
(C2×C4).15(C2×Dic3) = M4(2)⋊4Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C4484(C2xC4).15(C2xDic3)192,118
(C2×C4).16(C2×Dic3) = C24.19D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).16(C2xDic3)192,510
(C2×C4).17(C2×Dic3) = C4⋊C45Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).17(C2xDic3)192,539
(C2×C4).18(C2×Dic3) = C4⋊C46Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).18(C2xDic3)192,543
(C2×C4).19(C2×Dic3) = C42.187D6φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).19(C2xDic3)192,559
(C2×C4).20(C2×Dic3) = C123M4(2)φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).20(C2xDic3)192,571
(C2×C4).21(C2×Dic3) = C23.52D12φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).21(C2xDic3)192,680
(C2×C4).22(C2×Dic3) = C23.9Dic6φ: C2×Dic3/C6C22 ⊆ Aut C2×C4484(C2xC4).22(C2xDic3)192,684
(C2×C4).23(C2×Dic3) = (C6×D4)⋊6C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C448(C2xC4).23(C2xDic3)192,774
(C2×C4).24(C2×Dic3) = C2×C12.D4φ: C2×Dic3/C6C22 ⊆ Aut C2×C448(C2xC4).24(C2xDic3)192,775
(C2×C4).25(C2×Dic3) = (C6×Q8)⋊6C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).25(C2xDic3)192,784
(C2×C4).26(C2×Dic3) = C2×C12.10D4φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).26(C2xDic3)192,785
(C2×C4).27(C2×Dic3) = (C6×Q8)⋊7C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C4192(C2xC4).27(C2xDic3)192,788
(C2×C4).28(C2×Dic3) = C4○D43Dic3φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).28(C2xDic3)192,791
(C2×C4).29(C2×Dic3) = (C6×D4)⋊9C4φ: C2×Dic3/C6C22 ⊆ Aut C2×C4484(C2xC4).29(C2xDic3)192,795
(C2×C4).30(C2×Dic3) = C6.422- 1+4φ: C2×Dic3/C6C22 ⊆ Aut C2×C496(C2xC4).30(C2xDic3)192,1371
(C2×C4).31(C2×Dic3) = C12.76C24φ: C2×Dic3/C6C22 ⊆ Aut C2×C4484(C2xC4).31(C2xDic3)192,1378
(C2×C4).32(C2×Dic3) = Dic3×C4⋊C4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).32(C2xDic3)192,533
(C2×C4).33(C2×Dic3) = D4×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).33(C2xDic3)192,569
(C2×C4).34(C2×Dic3) = C42.47D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).34(C2xDic3)192,570
(C2×C4).35(C2×Dic3) = C12.C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).35(C2xDic3)192,88
(C2×C4).36(C2×Dic3) = C12.2C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C448(C2xC4).36(C2xDic3)192,91
(C2×C4).37(C2×Dic3) = C12.57D8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).37(C2xDic3)192,93
(C2×C4).38(C2×Dic3) = C12.26Q16φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).38(C2xDic3)192,94
(C2×C4).39(C2×Dic3) = C12.3C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C448(C2xC4).39(C2xDic3)192,114
(C2×C4).40(C2×Dic3) = C12.4C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).40(C2xDic3)192,117
(C2×C4).41(C2×Dic3) = C24.99D4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4964(C2xC4).41(C2xDic3)192,120
(C2×C4).42(C2×Dic3) = C12.5C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).42(C2xDic3)192,556
(C2×C4).43(C2×Dic3) = C42.43D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).43(C2xDic3)192,558
(C2×C4).44(C2×Dic3) = Q8×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).44(C2xDic3)192,582
(C2×C4).45(C2×Dic3) = C42.210D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).45(C2xDic3)192,583
(C2×C4).46(C2×Dic3) = Dic3×M4(2)φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).46(C2xDic3)192,676
(C2×C4).47(C2×Dic3) = C12.7C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).47(C2xDic3)192,681
(C2×C4).48(C2×Dic3) = C24.78C23φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4964(C2xC4).48(C2xDic3)192,699
(C2×C4).49(C2×Dic3) = C2×D4⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).49(C2xDic3)192,773
(C2×C4).50(C2×Dic3) = C24.30D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).50(C2xDic3)192,780
(C2×C4).51(C2×Dic3) = C2×Q82Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).51(C2xDic3)192,783
(C2×C4).52(C2×Dic3) = C4○D44Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).52(C2xDic3)192,792
(C2×C4).53(C2×Dic3) = (C6×D4).11C4φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).53(C2xDic3)192,793
(C2×C4).54(C2×Dic3) = C2×Q83Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C448(C2xC4).54(C2xDic3)192,794
(C2×C4).55(C2×Dic3) = C2×Q8×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C4192(C2xC4).55(C2xDic3)192,1370
(C2×C4).56(C2×Dic3) = C2×D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2×C496(C2xC4).56(C2xDic3)192,1377
(C2×C4).57(C2×Dic3) = C4×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).57(C2xDic3)192,481
(C2×C4).58(C2×Dic3) = C127M4(2)φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).58(C2xDic3)192,483
(C2×C4).59(C2×Dic3) = C42.270D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).59(C2xDic3)192,485
(C2×C4).60(C2×Dic3) = C426Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).60(C2xDic3)192,491
(C2×C4).61(C2×Dic3) = C4×C4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).61(C2xDic3)192,493
(C2×C4).62(C2×Dic3) = C4211Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).62(C2xDic3)192,495
(C2×C4).63(C2×Dic3) = C427Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).63(C2xDic3)192,496
(C2×C4).64(C2×Dic3) = C24.6Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C448(C2xC4).64(C2xDic3)192,766
(C2×C4).65(C2×Dic3) = C4×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).65(C2xDic3)192,768
(C2×C4).66(C2×Dic3) = C24.74D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).66(C2xDic3)192,770
(C2×C4).67(C2×Dic3) = C242C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).67(C2xDic3)192,16
(C2×C4).68(C2×Dic3) = C241C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).68(C2xDic3)192,17
(C2×C4).69(C2×Dic3) = C24.1C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4482(C2xC4).69(C2xDic3)192,22
(C2×C4).70(C2×Dic3) = C12.15C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).70(C2xDic3)192,25
(C2×C4).71(C2×Dic3) = C12.8C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C448(C2xC4).71(C2xDic3)192,82
(C2×C4).72(C2×Dic3) = C423Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).72(C2xDic3)192,90
(C2×C4).73(C2×Dic3) = C12.9C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).73(C2xDic3)192,110
(C2×C4).74(C2×Dic3) = C12.10C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).74(C2xDic3)192,111
(C2×C4).75(C2×Dic3) = C24.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).75(C2xDic3)192,112
(C2×C4).76(C2×Dic3) = (C2×C24)⋊C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).76(C2xDic3)192,115
(C2×C4).77(C2×Dic3) = C12.20C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).77(C2xDic3)192,116
(C2×C4).78(C2×Dic3) = C12.21C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4484(C2xC4).78(C2xDic3)192,119
(C2×C4).79(C2×Dic3) = C4210Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).79(C2xDic3)192,494
(C2×C4).80(C2×Dic3) = C12.12C42φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).80(C2xDic3)192,660
(C2×C4).81(C2×Dic3) = C2×C8⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).81(C2xDic3)192,663
(C2×C4).82(C2×Dic3) = C2×C241C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C4192(C2xC4).82(C2xDic3)192,664
(C2×C4).83(C2×Dic3) = C23.27D12φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).83(C2xDic3)192,665
(C2×C4).84(C2×Dic3) = C2×C24.C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).84(C2xDic3)192,666
(C2×C4).85(C2×Dic3) = C24.75D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).85(C2xDic3)192,771
(C2×C4).86(C2×Dic3) = C22×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2×C496(C2xC4).86(C2xDic3)192,1340
(C2×C4).87(C2×Dic3) = C8×C3⋊C8central extension (φ=1)192(C2xC4).87(C2xDic3)192,12
(C2×C4).88(C2×Dic3) = C42.279D6central extension (φ=1)192(C2xC4).88(C2xDic3)192,13
(C2×C4).89(C2×Dic3) = C24⋊C8central extension (φ=1)192(C2xC4).89(C2xDic3)192,14
(C2×C4).90(C2×Dic3) = C4×C3⋊C16central extension (φ=1)192(C2xC4).90(C2xDic3)192,19
(C2×C4).91(C2×Dic3) = C24.C8central extension (φ=1)192(C2xC4).91(C2xDic3)192,20
(C2×C4).92(C2×Dic3) = C12⋊C16central extension (φ=1)192(C2xC4).92(C2xDic3)192,21
(C2×C4).93(C2×Dic3) = C24.98D4central extension (φ=1)96(C2xC4).93(C2xDic3)192,108
(C2×C4).94(C2×Dic3) = (C2×C24)⋊5C4central extension (φ=1)192(C2xC4).94(C2xDic3)192,109
(C2×C4).95(C2×Dic3) = C2×C4×C3⋊C8central extension (φ=1)192(C2xC4).95(C2xDic3)192,479
(C2×C4).96(C2×Dic3) = C2×C42.S3central extension (φ=1)192(C2xC4).96(C2xDic3)192,480
(C2×C4).97(C2×Dic3) = C2×C12⋊C8central extension (φ=1)192(C2xC4).97(C2xDic3)192,482
(C2×C4).98(C2×Dic3) = C42.285D6central extension (φ=1)96(C2xC4).98(C2xDic3)192,484
(C2×C4).99(C2×Dic3) = Dic3×C42central extension (φ=1)192(C2xC4).99(C2xDic3)192,489
(C2×C4).100(C2×Dic3) = C22×C3⋊C16central extension (φ=1)192(C2xC4).100(C2xDic3)192,655
(C2×C4).101(C2×Dic3) = C2×C12.C8central extension (φ=1)96(C2xC4).101(C2xDic3)192,656
(C2×C4).102(C2×Dic3) = Dic3×C2×C8central extension (φ=1)192(C2xC4).102(C2xDic3)192,657
(C2×C4).103(C2×Dic3) = C2×C24⋊C4central extension (φ=1)192(C2xC4).103(C2xDic3)192,659
(C2×C4).104(C2×Dic3) = C2×C12.55D4central extension (φ=1)96(C2xC4).104(C2xDic3)192,765
(C2×C4).105(C2×Dic3) = C23×C3⋊C8central extension (φ=1)192(C2xC4).105(C2xDic3)192,1339

׿
×
𝔽