Extensions 1→N→G→Q→1 with N=C3×C36 and Q=C2

Direct product G=N×Q with N=C3×C36 and Q=C2
dρLabelID
C6×C36216C6xC36216,73

Semidirect products G=N:Q with N=C3×C36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C36)⋊1C2 = S3×C36φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36):1C2216,47
(C3×C36)⋊2C2 = C3×D36φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36):2C2216,46
(C3×C36)⋊3C2 = C36⋊S3φ: C2/C1C2 ⊆ Aut C3×C36108(C3xC36):3C2216,65
(C3×C36)⋊4C2 = C12×D9φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36):4C2216,45
(C3×C36)⋊5C2 = C4×C9⋊S3φ: C2/C1C2 ⊆ Aut C3×C36108(C3xC36):5C2216,64
(C3×C36)⋊6C2 = C9×D12φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36):6C2216,48
(C3×C36)⋊7C2 = D4×C3×C9φ: C2/C1C2 ⊆ Aut C3×C36108(C3xC36):7C2216,76

Non-split extensions G=N.Q with N=C3×C36 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C36).1C2 = C9×C3⋊C8φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36).1C2216,13
(C3×C36).2C2 = C3×Dic18φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36).2C2216,43
(C3×C36).3C2 = C12.D9φ: C2/C1C2 ⊆ Aut C3×C36216(C3xC36).3C2216,63
(C3×C36).4C2 = C3×C9⋊C8φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36).4C2216,12
(C3×C36).5C2 = C36.S3φ: C2/C1C2 ⊆ Aut C3×C36216(C3xC36).5C2216,16
(C3×C36).6C2 = C9×Dic6φ: C2/C1C2 ⊆ Aut C3×C36722(C3xC36).6C2216,44
(C3×C36).7C2 = Q8×C3×C9φ: C2/C1C2 ⊆ Aut C3×C36216(C3xC36).7C2216,79

׿
×
𝔽