Extensions 1→N→G→Q→1 with N=C3xC6 and Q=Dic3

Direct product G=NxQ with N=C3xC6 and Q=Dic3
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3xC6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3xC6):1Dic3 = C2xC32:C12φ: Dic3/C2S3 ⊆ Aut C3xC672(C3xC6):1Dic3216,59
(C3xC6):2Dic3 = C2xHe3:3C4φ: Dic3/C2S3 ⊆ Aut C3xC672(C3xC6):2Dic3216,71
(C3xC6):3Dic3 = C2xC33:C4φ: Dic3/C3C4 ⊆ Aut C3xC6244(C3xC6):3Dic3216,169
(C3xC6):4Dic3 = C6xC3:Dic3φ: Dic3/C6C2 ⊆ Aut C3xC672(C3xC6):4Dic3216,143
(C3xC6):5Dic3 = C2xC33:5C4φ: Dic3/C6C2 ⊆ Aut C3xC6216(C3xC6):5Dic3216,148

Non-split extensions G=N.Q with N=C3xC6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3xC6).1Dic3 = He3:3C8φ: Dic3/C2S3 ⊆ Aut C3xC6726(C3xC6).1Dic3216,14
(C3xC6).2Dic3 = C9:C24φ: Dic3/C2S3 ⊆ Aut C3xC6726(C3xC6).2Dic3216,15
(C3xC6).3Dic3 = He3:4C8φ: Dic3/C2S3 ⊆ Aut C3xC6723(C3xC6).3Dic3216,17
(C3xC6).4Dic3 = C2xC9:C12φ: Dic3/C2S3 ⊆ Aut C3xC672(C3xC6).4Dic3216,61
(C3xC6).5Dic3 = C33:4C8φ: Dic3/C3C4 ⊆ Aut C3xC6244(C3xC6).5Dic3216,118
(C3xC6).6Dic3 = C3xC9:C8φ: Dic3/C6C2 ⊆ Aut C3xC6722(C3xC6).6Dic3216,12
(C3xC6).7Dic3 = C36.S3φ: Dic3/C6C2 ⊆ Aut C3xC6216(C3xC6).7Dic3216,16
(C3xC6).8Dic3 = C6xDic9φ: Dic3/C6C2 ⊆ Aut C3xC672(C3xC6).8Dic3216,55
(C3xC6).9Dic3 = C2xC9:Dic3φ: Dic3/C6C2 ⊆ Aut C3xC6216(C3xC6).9Dic3216,69
(C3xC6).10Dic3 = C3xC32:4C8φ: Dic3/C6C2 ⊆ Aut C3xC672(C3xC6).10Dic3216,83
(C3xC6).11Dic3 = C33:7C8φ: Dic3/C6C2 ⊆ Aut C3xC6216(C3xC6).11Dic3216,84
(C3xC6).12Dic3 = C32xC3:C8central extension (φ=1)72(C3xC6).12Dic3216,82

׿
x
:
Z
F
o
wr
Q
<