Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C12

Direct product G=NxQ with N=C3xC6 and Q=C12
dρLabelID
C3xC6xC12216C3xC6xC12216,150

Semidirect products G=N:Q with N=C3xC6 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C3xC6):C12 = C2xC32:C12φ: C12/C2C6 ⊆ Aut C3xC672(C3xC6):C12216,59
(C3xC6):2C12 = C6xC32:C4φ: C12/C3C4 ⊆ Aut C3xC6244(C3xC6):2C12216,168
(C3xC6):3C12 = C2xC4xHe3φ: C12/C4C3 ⊆ Aut C3xC672(C3xC6):3C12216,74
(C3xC6):4C12 = Dic3xC3xC6φ: C12/C6C2 ⊆ Aut C3xC672(C3xC6):4C12216,138
(C3xC6):5C12 = C6xC3:Dic3φ: C12/C6C2 ⊆ Aut C3xC672(C3xC6):5C12216,143

Non-split extensions G=N.Q with N=C3xC6 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C3xC6).C12 = He3:3C8φ: C12/C2C6 ⊆ Aut C3xC6726(C3xC6).C12216,14
(C3xC6).2C12 = C3xC32:2C8φ: C12/C3C4 ⊆ Aut C3xC6244(C3xC6).2C12216,117
(C3xC6).3C12 = C8xHe3φ: C12/C4C3 ⊆ Aut C3xC6723(C3xC6).3C12216,19
(C3xC6).4C12 = C8x3- 1+2φ: C12/C4C3 ⊆ Aut C3xC6723(C3xC6).4C12216,20
(C3xC6).5C12 = C2xC4x3- 1+2φ: C12/C4C3 ⊆ Aut C3xC672(C3xC6).5C12216,75
(C3xC6).6C12 = C9xC3:C8φ: C12/C6C2 ⊆ Aut C3xC6722(C3xC6).6C12216,13
(C3xC6).7C12 = Dic3xC18φ: C12/C6C2 ⊆ Aut C3xC672(C3xC6).7C12216,56
(C3xC6).8C12 = C32xC3:C8φ: C12/C6C2 ⊆ Aut C3xC672(C3xC6).8C12216,82
(C3xC6).9C12 = C3xC32:4C8φ: C12/C6C2 ⊆ Aut C3xC672(C3xC6).9C12216,83

׿
x
:
Z
F
o
wr
Q
<