Copied to
clipboard

G = C284D4order 224 = 25·7

1st semidirect product of C28 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C284D4, C41D28, C425D7, (C4×C28)⋊4C2, (C2×D28)⋊1C2, C71(C41D4), C2.5(C2×D28), C14.3(C2×D4), (C2×C4).76D14, (C2×C14).15C23, (C2×C28).87C22, (C22×D7).1C22, C22.36(C22×D7), SmallGroup(224,69)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C284D4
C1C7C14C2×C14C22×D7C2×D28 — C284D4
C7C2×C14 — C284D4
C1C22C42

Generators and relations for C284D4
 G = < a,b,c | a4=b28=c2=1, ab=ba, cac=a-1, cbc=b-1 >

Subgroups: 630 in 108 conjugacy classes, 41 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, D7, C14, C42, C2×D4, C28, D14, C2×C14, C41D4, D28, C2×C28, C22×D7, C4×C28, C2×D28, C284D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C41D4, D28, C22×D7, C2×D28, C284D4

Smallest permutation representation of C284D4
On 112 points
Generators in S112
(1 89 71 51)(2 90 72 52)(3 91 73 53)(4 92 74 54)(5 93 75 55)(6 94 76 56)(7 95 77 29)(8 96 78 30)(9 97 79 31)(10 98 80 32)(11 99 81 33)(12 100 82 34)(13 101 83 35)(14 102 84 36)(15 103 57 37)(16 104 58 38)(17 105 59 39)(18 106 60 40)(19 107 61 41)(20 108 62 42)(21 109 63 43)(22 110 64 44)(23 111 65 45)(24 112 66 46)(25 85 67 47)(26 86 68 48)(27 87 69 49)(28 88 70 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 89)(30 88)(31 87)(32 86)(33 85)(34 112)(35 111)(36 110)(37 109)(38 108)(39 107)(40 106)(41 105)(42 104)(43 103)(44 102)(45 101)(46 100)(47 99)(48 98)(49 97)(50 96)(51 95)(52 94)(53 93)(54 92)(55 91)(56 90)(57 63)(58 62)(59 61)(64 84)(65 83)(66 82)(67 81)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)

G:=sub<Sym(112)| (1,89,71,51)(2,90,72,52)(3,91,73,53)(4,92,74,54)(5,93,75,55)(6,94,76,56)(7,95,77,29)(8,96,78,30)(9,97,79,31)(10,98,80,32)(11,99,81,33)(12,100,82,34)(13,101,83,35)(14,102,84,36)(15,103,57,37)(16,104,58,38)(17,105,59,39)(18,106,60,40)(19,107,61,41)(20,108,62,42)(21,109,63,43)(22,110,64,44)(23,111,65,45)(24,112,66,46)(25,85,67,47)(26,86,68,48)(27,87,69,49)(28,88,70,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,89)(30,88)(31,87)(32,86)(33,85)(34,112)(35,111)(36,110)(37,109)(38,108)(39,107)(40,106)(41,105)(42,104)(43,103)(44,102)(45,101)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,63)(58,62)(59,61)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)>;

G:=Group( (1,89,71,51)(2,90,72,52)(3,91,73,53)(4,92,74,54)(5,93,75,55)(6,94,76,56)(7,95,77,29)(8,96,78,30)(9,97,79,31)(10,98,80,32)(11,99,81,33)(12,100,82,34)(13,101,83,35)(14,102,84,36)(15,103,57,37)(16,104,58,38)(17,105,59,39)(18,106,60,40)(19,107,61,41)(20,108,62,42)(21,109,63,43)(22,110,64,44)(23,111,65,45)(24,112,66,46)(25,85,67,47)(26,86,68,48)(27,87,69,49)(28,88,70,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,89)(30,88)(31,87)(32,86)(33,85)(34,112)(35,111)(36,110)(37,109)(38,108)(39,107)(40,106)(41,105)(42,104)(43,103)(44,102)(45,101)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,63)(58,62)(59,61)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75) );

G=PermutationGroup([[(1,89,71,51),(2,90,72,52),(3,91,73,53),(4,92,74,54),(5,93,75,55),(6,94,76,56),(7,95,77,29),(8,96,78,30),(9,97,79,31),(10,98,80,32),(11,99,81,33),(12,100,82,34),(13,101,83,35),(14,102,84,36),(15,103,57,37),(16,104,58,38),(17,105,59,39),(18,106,60,40),(19,107,61,41),(20,108,62,42),(21,109,63,43),(22,110,64,44),(23,111,65,45),(24,112,66,46),(25,85,67,47),(26,86,68,48),(27,87,69,49),(28,88,70,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,89),(30,88),(31,87),(32,86),(33,85),(34,112),(35,111),(36,110),(37,109),(38,108),(39,107),(40,106),(41,105),(42,104),(43,103),(44,102),(45,101),(46,100),(47,99),(48,98),(49,97),(50,96),(51,95),(52,94),(53,93),(54,92),(55,91),(56,90),(57,63),(58,62),(59,61),(64,84),(65,83),(66,82),(67,81),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75)]])

C284D4 is a maximal subgroup of
C4.D56  C85D28  C4.5D56  C284D8  C8⋊D28  C42.19D14  D44D28  C4⋊D56  Dic148D4  C287D8  Q8⋊D28  C42.64D14  C42.70D14  C28⋊D8  C286SD16  C28.D8  C42.276D14  C429D14  C42.100D14  D4×D28  Dic1424D4  Q86D28  C42.136D14  C4218D14  C42.156D14  C4225D14  D7×C41D4  C42.240D14
C284D4 is a maximal quotient of
(C2×C28)⋊5D4  (C2×C28).33D4  C85D28  C284D8  C8.8D28  C284Q16  C8⋊D28  C8.D28  C428Dic7  (C2×C4)⋊6D28

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F7A7B7C14A···14I28A···28AJ
order122222224···477714···1428···28
size1111282828282···22222···22···2

62 irreducible representations

dim1112222
type+++++++
imageC1C2C2D4D7D14D28
kernelC284D4C4×C28C2×D28C28C42C2×C4C4
# reps11663936

Matrix representation of C284D4 in GL4(𝔽29) generated by

272300
25200
00280
00028
,
262200
52100
0094
00258
,
01900
26000
00107
001919
G:=sub<GL(4,GF(29))| [27,25,0,0,23,2,0,0,0,0,28,0,0,0,0,28],[26,5,0,0,22,21,0,0,0,0,9,25,0,0,4,8],[0,26,0,0,19,0,0,0,0,0,10,19,0,0,7,19] >;

C284D4 in GAP, Magma, Sage, TeX

C_{28}\rtimes_4D_4
% in TeX

G:=Group("C28:4D4");
// GroupNames label

G:=SmallGroup(224,69);
// by ID

G=gap.SmallGroup(224,69);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,218,50,6917]);
// Polycyclic

G:=Group<a,b,c|a^4=b^28=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽