Copied to
clipboard

G = C7×C4⋊D4order 224 = 25·7

Direct product of C7 and C4⋊D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C4⋊D4, C289D4, C42(C7×D4), C4⋊C42C14, (C2×C14)⋊4D4, (C2×D4)⋊2C14, C2.5(D4×C14), C221(C7×D4), (D4×C14)⋊11C2, C22⋊C43C14, (C22×C4)⋊4C14, C14.68(C2×D4), (C22×C28)⋊11C2, C23.8(C2×C14), C14.41(C4○D4), (C2×C14).76C23, (C2×C28).123C22, (C22×C14).27C22, C22.11(C22×C14), (C7×C4⋊C4)⋊11C2, C2.4(C7×C4○D4), (C2×C4).3(C2×C14), (C7×C22⋊C4)⋊11C2, SmallGroup(224,156)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C4⋊D4
C1C2C22C2×C14C22×C14D4×C14 — C7×C4⋊D4
C1C22 — C7×C4⋊D4
C1C2×C14 — C7×C4⋊D4

Generators and relations for C7×C4⋊D4
 G = < a,b,c,d | a7=b4=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 148 in 94 conjugacy classes, 48 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, C23, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C28, C28, C2×C14, C2×C14, C2×C14, C4⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C7×C22⋊C4, C7×C4⋊C4, C22×C28, D4×C14, D4×C14, C7×C4⋊D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C4○D4, C2×C14, C4⋊D4, C7×D4, C22×C14, D4×C14, C7×C4○D4, C7×C4⋊D4

Smallest permutation representation of C7×C4⋊D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 78 39 94)(2 79 40 95)(3 80 41 96)(4 81 42 97)(5 82 36 98)(6 83 37 92)(7 84 38 93)(8 62 23 77)(9 63 24 71)(10 57 25 72)(11 58 26 73)(12 59 27 74)(13 60 28 75)(14 61 22 76)(15 66 106 50)(16 67 107 51)(17 68 108 52)(18 69 109 53)(19 70 110 54)(20 64 111 55)(21 65 112 56)(29 100 44 85)(30 101 45 86)(31 102 46 87)(32 103 47 88)(33 104 48 89)(34 105 49 90)(35 99 43 91)
(1 66 35 63)(2 67 29 57)(3 68 30 58)(4 69 31 59)(5 70 32 60)(6 64 33 61)(7 65 34 62)(8 84 21 105)(9 78 15 99)(10 79 16 100)(11 80 17 101)(12 81 18 102)(13 82 19 103)(14 83 20 104)(22 92 111 89)(23 93 112 90)(24 94 106 91)(25 95 107 85)(26 96 108 86)(27 97 109 87)(28 98 110 88)(36 54 47 75)(37 55 48 76)(38 56 49 77)(39 50 43 71)(40 51 44 72)(41 52 45 73)(42 53 46 74)
(8 112)(9 106)(10 107)(11 108)(12 109)(13 110)(14 111)(15 24)(16 25)(17 26)(18 27)(19 28)(20 22)(21 23)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 67)(58 68)(59 69)(60 70)(61 64)(62 65)(63 66)(78 94)(79 95)(80 96)(81 97)(82 98)(83 92)(84 93)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 99)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,78,39,94)(2,79,40,95)(3,80,41,96)(4,81,42,97)(5,82,36,98)(6,83,37,92)(7,84,38,93)(8,62,23,77)(9,63,24,71)(10,57,25,72)(11,58,26,73)(12,59,27,74)(13,60,28,75)(14,61,22,76)(15,66,106,50)(16,67,107,51)(17,68,108,52)(18,69,109,53)(19,70,110,54)(20,64,111,55)(21,65,112,56)(29,100,44,85)(30,101,45,86)(31,102,46,87)(32,103,47,88)(33,104,48,89)(34,105,49,90)(35,99,43,91), (1,66,35,63)(2,67,29,57)(3,68,30,58)(4,69,31,59)(5,70,32,60)(6,64,33,61)(7,65,34,62)(8,84,21,105)(9,78,15,99)(10,79,16,100)(11,80,17,101)(12,81,18,102)(13,82,19,103)(14,83,20,104)(22,92,111,89)(23,93,112,90)(24,94,106,91)(25,95,107,85)(26,96,108,86)(27,97,109,87)(28,98,110,88)(36,54,47,75)(37,55,48,76)(38,56,49,77)(39,50,43,71)(40,51,44,72)(41,52,45,73)(42,53,46,74), (8,112)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94)(79,95)(80,96)(81,97)(82,98)(83,92)(84,93)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,78,39,94)(2,79,40,95)(3,80,41,96)(4,81,42,97)(5,82,36,98)(6,83,37,92)(7,84,38,93)(8,62,23,77)(9,63,24,71)(10,57,25,72)(11,58,26,73)(12,59,27,74)(13,60,28,75)(14,61,22,76)(15,66,106,50)(16,67,107,51)(17,68,108,52)(18,69,109,53)(19,70,110,54)(20,64,111,55)(21,65,112,56)(29,100,44,85)(30,101,45,86)(31,102,46,87)(32,103,47,88)(33,104,48,89)(34,105,49,90)(35,99,43,91), (1,66,35,63)(2,67,29,57)(3,68,30,58)(4,69,31,59)(5,70,32,60)(6,64,33,61)(7,65,34,62)(8,84,21,105)(9,78,15,99)(10,79,16,100)(11,80,17,101)(12,81,18,102)(13,82,19,103)(14,83,20,104)(22,92,111,89)(23,93,112,90)(24,94,106,91)(25,95,107,85)(26,96,108,86)(27,97,109,87)(28,98,110,88)(36,54,47,75)(37,55,48,76)(38,56,49,77)(39,50,43,71)(40,51,44,72)(41,52,45,73)(42,53,46,74), (8,112)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94)(79,95)(80,96)(81,97)(82,98)(83,92)(84,93)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,78,39,94),(2,79,40,95),(3,80,41,96),(4,81,42,97),(5,82,36,98),(6,83,37,92),(7,84,38,93),(8,62,23,77),(9,63,24,71),(10,57,25,72),(11,58,26,73),(12,59,27,74),(13,60,28,75),(14,61,22,76),(15,66,106,50),(16,67,107,51),(17,68,108,52),(18,69,109,53),(19,70,110,54),(20,64,111,55),(21,65,112,56),(29,100,44,85),(30,101,45,86),(31,102,46,87),(32,103,47,88),(33,104,48,89),(34,105,49,90),(35,99,43,91)], [(1,66,35,63),(2,67,29,57),(3,68,30,58),(4,69,31,59),(5,70,32,60),(6,64,33,61),(7,65,34,62),(8,84,21,105),(9,78,15,99),(10,79,16,100),(11,80,17,101),(12,81,18,102),(13,82,19,103),(14,83,20,104),(22,92,111,89),(23,93,112,90),(24,94,106,91),(25,95,107,85),(26,96,108,86),(27,97,109,87),(28,98,110,88),(36,54,47,75),(37,55,48,76),(38,56,49,77),(39,50,43,71),(40,51,44,72),(41,52,45,73),(42,53,46,74)], [(8,112),(9,106),(10,107),(11,108),(12,109),(13,110),(14,111),(15,24),(16,25),(17,26),(18,27),(19,28),(20,22),(21,23),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,67),(58,68),(59,69),(60,70),(61,64),(62,65),(63,66),(78,94),(79,95),(80,96),(81,97),(82,98),(83,92),(84,93),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,99)]])

C7×C4⋊D4 is a maximal subgroup of
(D4×C14)⋊C4  (C2×C14).D8  C4⋊D4.D7  (C2×D4).D14  D2816D4  D2817D4  C7⋊C822D4  C4⋊D4⋊D7  Dic1417D4  C7⋊C823D4  C7⋊C85D4  C28⋊(C4○D4)  C14.682- 1+4  Dic1419D4  Dic1420D4  C4⋊C4.178D14  C14.342+ 1+4  C14.352+ 1+4  C14.712- 1+4  C14.372+ 1+4  C4⋊C421D14  C14.382+ 1+4  C14.722- 1+4  D2819D4  C14.402+ 1+4  C14.732- 1+4  D2820D4  C14.422+ 1+4  C14.432+ 1+4  C14.442+ 1+4  C14.452+ 1+4  C14.462+ 1+4  C14.1152+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C14.492+ 1+4  C7×D42

98 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F7A···7F14A···14R14S···14AD14AE···14AP28A···28X28Y···28AJ
order122222224444447···714···1414···1414···1428···2828···28
size111122442222441···11···12···24···42···24···4

98 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C7C14C14C14C14D4D4C4○D4C7×D4C7×D4C7×C4○D4
kernelC7×C4⋊D4C7×C22⋊C4C7×C4⋊C4C22×C28D4×C14C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C28C2×C14C14C4C22C2
# reps121136126618222121212

Matrix representation of C7×C4⋊D4 in GL4(𝔽29) generated by

20000
02000
00250
00025
,
01700
17000
002327
0046
,
02800
1000
0010
002328
,
1000
02800
0010
002328
G:=sub<GL(4,GF(29))| [20,0,0,0,0,20,0,0,0,0,25,0,0,0,0,25],[0,17,0,0,17,0,0,0,0,0,23,4,0,0,27,6],[0,1,0,0,28,0,0,0,0,0,1,23,0,0,0,28],[1,0,0,0,0,28,0,0,0,0,1,23,0,0,0,28] >;

C7×C4⋊D4 in GAP, Magma, Sage, TeX

C_7\times C_4\rtimes D_4
% in TeX

G:=Group("C7xC4:D4");
// GroupNames label

G:=SmallGroup(224,156);
// by ID

G=gap.SmallGroup(224,156);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,343,2090]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽