# Extensions 1→N→G→Q→1 with N=C2×C12 and Q=D5

Direct product G=N×Q with N=C2×C12 and Q=D5
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C2×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C12)⋊1D5 = C3×D10⋊C4φ: D5/C5C2 ⊆ Aut C2×C12120(C2xC12):1D5240,43
(C2×C12)⋊2D5 = D303C4φ: D5/C5C2 ⊆ Aut C2×C12120(C2xC12):2D5240,75
(C2×C12)⋊3D5 = C2×D60φ: D5/C5C2 ⊆ Aut C2×C12120(C2xC12):3D5240,177
(C2×C12)⋊4D5 = D6011C2φ: D5/C5C2 ⊆ Aut C2×C121202(C2xC12):4D5240,178
(C2×C12)⋊5D5 = C2×C4×D15φ: D5/C5C2 ⊆ Aut C2×C12120(C2xC12):5D5240,176
(C2×C12)⋊6D5 = C6×D20φ: D5/C5C2 ⊆ Aut C2×C12120(C2xC12):6D5240,157
(C2×C12)⋊7D5 = C3×C4○D20φ: D5/C5C2 ⊆ Aut C2×C121202(C2xC12):7D5240,158

Non-split extensions G=N.Q with N=C2×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C12).1D5 = C3×C10.D4φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).1D5240,41
(C2×C12).2D5 = C30.4Q8φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).2D5240,73
(C2×C12).3D5 = C605C4φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).3D5240,74
(C2×C12).4D5 = C2×Dic30φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).4D5240,175
(C2×C12).5D5 = C60.7C4φ: D5/C5C2 ⊆ Aut C2×C121202(C2xC12).5D5240,71
(C2×C12).6D5 = C2×C153C8φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).6D5240,70
(C2×C12).7D5 = C4×Dic15φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).7D5240,72
(C2×C12).8D5 = C3×C4.Dic5φ: D5/C5C2 ⊆ Aut C2×C121202(C2xC12).8D5240,39
(C2×C12).9D5 = C3×C4⋊Dic5φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).9D5240,42
(C2×C12).10D5 = C6×Dic10φ: D5/C5C2 ⊆ Aut C2×C12240(C2xC12).10D5240,155
(C2×C12).11D5 = C6×C52C8central extension (φ=1)240(C2xC12).11D5240,38
(C2×C12).12D5 = C12×Dic5central extension (φ=1)240(C2xC12).12D5240,40

׿
×
𝔽