direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D60, C20⋊7D6, C4⋊2D30, C30⋊4D4, C6⋊1D20, C10⋊1D12, C12⋊7D10, C60⋊8C22, D30⋊5C22, C30.30C23, C22.10D30, C3⋊2(C2×D20), C5⋊2(C2×D12), (C2×C60)⋊5C2, (C2×C20)⋊3S3, (C2×C12)⋊3D5, (C2×C4)⋊2D15, C15⋊10(C2×D4), (C2×C6).28D10, (C2×C10).28D6, (C22×D15)⋊1C2, C6.30(C22×D5), C2.4(C22×D15), (C2×C30).29C22, C10.30(C22×S3), SmallGroup(240,177)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D60
G = < a,b,c | a2=b60=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 680 in 108 conjugacy classes, 43 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C22, C22 [×8], C5, S3 [×4], C6, C6 [×2], C2×C4, D4 [×4], C23 [×2], D5 [×4], C10, C10 [×2], C12 [×2], D6 [×8], C2×C6, C15, C2×D4, C20 [×2], D10 [×8], C2×C10, D12 [×4], C2×C12, C22×S3 [×2], D15 [×4], C30, C30 [×2], D20 [×4], C2×C20, C22×D5 [×2], C2×D12, C60 [×2], D30 [×4], D30 [×4], C2×C30, C2×D20, D60 [×4], C2×C60, C22×D15 [×2], C2×D60
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×2], C23, D5, D6 [×3], C2×D4, D10 [×3], D12 [×2], C22×S3, D15, D20 [×2], C22×D5, C2×D12, D30 [×3], C2×D20, D60 [×2], C22×D15, C2×D60
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 101)(9 102)(10 103)(11 104)(12 105)(13 106)(14 107)(15 108)(16 109)(17 110)(18 111)(19 112)(20 113)(21 114)(22 115)(23 116)(24 117)(25 118)(26 119)(27 120)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 89)(57 90)(58 91)(59 92)(60 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(61 66)(62 65)(63 64)(67 120)(68 119)(69 118)(70 117)(71 116)(72 115)(73 114)(74 113)(75 112)(76 111)(77 110)(78 109)(79 108)(80 107)(81 106)(82 105)(83 104)(84 103)(85 102)(86 101)(87 100)(88 99)(89 98)(90 97)(91 96)(92 95)(93 94)
G:=sub<Sym(120)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(61,66)(62,65)(63,64)(67,120)(68,119)(69,118)(70,117)(71,116)(72,115)(73,114)(74,113)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103)(85,102)(86,101)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)>;
G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(61,66)(62,65)(63,64)(67,120)(68,119)(69,118)(70,117)(71,116)(72,115)(73,114)(74,113)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103)(85,102)(86,101)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94) );
G=PermutationGroup([(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,101),(9,102),(10,103),(11,104),(12,105),(13,106),(14,107),(15,108),(16,109),(17,110),(18,111),(19,112),(20,113),(21,114),(22,115),(23,116),(24,117),(25,118),(26,119),(27,120),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,89),(57,90),(58,91),(59,92),(60,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(61,66),(62,65),(63,64),(67,120),(68,119),(69,118),(70,117),(71,116),(72,115),(73,114),(74,113),(75,112),(76,111),(77,110),(78,109),(79,108),(80,107),(81,106),(82,105),(83,104),(84,103),(85,102),(86,101),(87,100),(88,99),(89,98),(90,97),(91,96),(92,95),(93,94)])
C2×D60 is a maximal subgroup of
C60.29D4 D60⋊12C4 D60⋊15C4 D60⋊9C4 D60⋊8C4 M4(2)⋊D15 D20⋊19D6 C60.38D4 C60.47D4 C60.70D4 D60⋊17C4 D30⋊D4 D60⋊14C4 D30.6D4 C12⋊7D20 C20⋊D12 C12⋊D20 D30⋊2D4 C60⋊6D4 D30⋊5D4 C42⋊6D15 C42⋊7D15 D30⋊16D4 D30⋊9D4 D60⋊11C4 D30.29D4 C4⋊D60 C8⋊D30 C60⋊29D4 C60⋊3D4 C60.23D4 D4⋊D30 C2×D5×D12 C2×S3×D20 D20⋊29D6 C2×D4×D15 D4⋊8D30
C2×D60 is a maximal quotient of
C60⋊8Q8 C42⋊6D15 C42⋊7D15 D30⋊16D4 C22.D60 C4⋊D60 D30⋊6Q8 C40.69D6 C8⋊D30 C8.D30 C60⋊29D4
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 60A | ··· | 60P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 30 | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D6 | D10 | D10 | D12 | D15 | D20 | D30 | D30 | D60 |
kernel | C2×D60 | D60 | C2×C60 | C22×D15 | C2×C20 | C30 | C2×C12 | C20 | C2×C10 | C12 | C2×C6 | C10 | C2×C4 | C6 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 4 | 2 | 4 | 4 | 8 | 8 | 4 | 16 |
Matrix representation of C2×D60 ►in GL5(𝔽61)
60 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
60 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 34 |
0 | 0 | 0 | 56 | 7 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 29 | 36 |
0 | 0 | 0 | 58 | 32 |
G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[60,0,0,0,0,0,1,60,0,0,0,1,0,0,0,0,0,0,2,56,0,0,0,34,7],[1,0,0,0,0,0,1,0,0,0,0,1,60,0,0,0,0,0,29,58,0,0,0,36,32] >;
C2×D60 in GAP, Magma, Sage, TeX
C_2\times D_{60}
% in TeX
G:=Group("C2xD60");
// GroupNames label
G:=SmallGroup(240,177);
// by ID
G=gap.SmallGroup(240,177);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,50,964,6917]);
// Polycyclic
G:=Group<a,b,c|a^2=b^60=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations