Copied to
clipboard

G = D28⋊C4order 224 = 25·7

5th semidirect product of D28 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D285C4, Dic75D4, C73(C4×D4), C4⋊C48D7, C41(C4×D7), C282(C2×C4), C2.4(D4×D7), D143(C2×C4), D14⋊C412C2, (C4×Dic7)⋊3C2, (C2×D28).7C2, C14.24(C2×D4), (C2×C4).31D14, C14.33(C4○D4), (C2×C14).34C23, (C2×C28).24C22, C14.11(C22×C4), C2.2(Q82D7), C22.18(C22×D7), (C2×Dic7).49C22, (C22×D7).20C22, (C7×C4⋊C4)⋊4C2, (C2×C4×D7)⋊12C2, C2.13(C2×C4×D7), SmallGroup(224,88)

Series: Derived Chief Lower central Upper central

C1C14 — D28⋊C4
C1C7C14C2×C14C22×D7C2×D28 — D28⋊C4
C7C14 — D28⋊C4
C1C22C4⋊C4

Generators and relations for D28⋊C4
 G = < a,b,c | a28=b2=c4=1, bab=a-1, cac-1=a15, cbc-1=a14b >

Subgroups: 406 in 94 conjugacy classes, 43 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C4×D4, C4×D7, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, C4×Dic7, D14⋊C4, C7×C4⋊C4, C2×C4×D7, C2×D28, D28⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C2×C4×D7, D4×D7, Q82D7, D28⋊C4

Smallest permutation representation of D28⋊C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 35)(30 34)(31 33)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(70 84)(71 83)(72 82)(73 81)(74 80)(75 79)(76 78)(85 87)(88 112)(89 111)(90 110)(91 109)(92 108)(93 107)(94 106)(95 105)(96 104)(97 103)(98 102)(99 101)
(1 50 74 90)(2 37 75 105)(3 52 76 92)(4 39 77 107)(5 54 78 94)(6 41 79 109)(7 56 80 96)(8 43 81 111)(9 30 82 98)(10 45 83 85)(11 32 84 100)(12 47 57 87)(13 34 58 102)(14 49 59 89)(15 36 60 104)(16 51 61 91)(17 38 62 106)(18 53 63 93)(19 40 64 108)(20 55 65 95)(21 42 66 110)(22 29 67 97)(23 44 68 112)(24 31 69 99)(25 46 70 86)(26 33 71 101)(27 48 72 88)(28 35 73 103)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,35)(30,34)(31,33)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(70,84)(71,83)(72,82)(73,81)(74,80)(75,79)(76,78)(85,87)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101), (1,50,74,90)(2,37,75,105)(3,52,76,92)(4,39,77,107)(5,54,78,94)(6,41,79,109)(7,56,80,96)(8,43,81,111)(9,30,82,98)(10,45,83,85)(11,32,84,100)(12,47,57,87)(13,34,58,102)(14,49,59,89)(15,36,60,104)(16,51,61,91)(17,38,62,106)(18,53,63,93)(19,40,64,108)(20,55,65,95)(21,42,66,110)(22,29,67,97)(23,44,68,112)(24,31,69,99)(25,46,70,86)(26,33,71,101)(27,48,72,88)(28,35,73,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,35)(30,34)(31,33)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(70,84)(71,83)(72,82)(73,81)(74,80)(75,79)(76,78)(85,87)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101), (1,50,74,90)(2,37,75,105)(3,52,76,92)(4,39,77,107)(5,54,78,94)(6,41,79,109)(7,56,80,96)(8,43,81,111)(9,30,82,98)(10,45,83,85)(11,32,84,100)(12,47,57,87)(13,34,58,102)(14,49,59,89)(15,36,60,104)(16,51,61,91)(17,38,62,106)(18,53,63,93)(19,40,64,108)(20,55,65,95)(21,42,66,110)(22,29,67,97)(23,44,68,112)(24,31,69,99)(25,46,70,86)(26,33,71,101)(27,48,72,88)(28,35,73,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,35),(30,34),(31,33),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(70,84),(71,83),(72,82),(73,81),(74,80),(75,79),(76,78),(85,87),(88,112),(89,111),(90,110),(91,109),(92,108),(93,107),(94,106),(95,105),(96,104),(97,103),(98,102),(99,101)], [(1,50,74,90),(2,37,75,105),(3,52,76,92),(4,39,77,107),(5,54,78,94),(6,41,79,109),(7,56,80,96),(8,43,81,111),(9,30,82,98),(10,45,83,85),(11,32,84,100),(12,47,57,87),(13,34,58,102),(14,49,59,89),(15,36,60,104),(16,51,61,91),(17,38,62,106),(18,53,63,93),(19,40,64,108),(20,55,65,95),(21,42,66,110),(22,29,67,97),(23,44,68,112),(24,31,69,99),(25,46,70,86),(26,33,71,101),(27,48,72,88),(28,35,73,103)]])

D28⋊C4 is a maximal subgroup of
Dic74D8  D4⋊D7⋊C4  D283D4  D28.D4  Dic77SD16  Q8⋊D7⋊C4  Dic7⋊SD16  D28.12D4  Dic78SD16  D569C4  D28⋊Q8  D28.Q8  Dic75D8  C56⋊C2⋊C4  D282Q8  D28.2Q8  C14.82+ 1+4  C14.2- 1+4  C14.112+ 1+4  C427D14  C42.188D14  C42.95D14  C42.97D14  C4×D4×D7  C4211D14  Dic1424D4  C42.114D14  C42.122D14  C4×Q82D7  C42.126D14  C42.136D14  C28⋊(C4○D4)  D2819D4  D2820D4  C14.472+ 1+4  C22⋊Q825D7  C4⋊C426D14  D2821D4  D2822D4  Dic1422D4  C14.532+ 1+4  C14.202- 1+4  C14.242- 1+4  C14.1212+ 1+4  C4⋊C428D14  C14.612+ 1+4  C14.642+ 1+4  D287Q8  C42.237D14  C42.150D14  C42.151D14  C42.153D14  C42.156D14  C4223D14  C4224D14  C42.189D14  C42.163D14  C42.240D14  D288Q8  D289Q8  C42.178D14
D28⋊C4 is a maximal quotient of
C4⋊Dic78C4  (C2×C4)⋊9D28  D14⋊C42  D14⋊C45C4  D28⋊C8  D143M4(2)  C282M4(2)  Dic78SD16  Dic289C4  D569C4  Dic75D8  Dic286C4  C56⋊C2⋊C4  D5610C4  D567C4  C28⋊(C4⋊C4)  C4⋊C4×Dic7  (C2×D28)⋊10C4  D14⋊C46C4  D14⋊C47C4

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L7A7B7C14A···14I28A···28R
order122222224···444444477714···1428···28
size1111141414142···2777714142222···24···4

50 irreducible representations

dim11111112222244
type+++++++++++
imageC1C2C2C2C2C2C4D4D7C4○D4D14C4×D7D4×D7Q82D7
kernelD28⋊C4C4×Dic7D14⋊C4C7×C4⋊C4C2×C4×D7C2×D28D28Dic7C4⋊C4C14C2×C4C4C2C2
# reps112121823291233

Matrix representation of D28⋊C4 in GL4(𝔽29) generated by

10700
22100
002411
00245
,
192200
101000
00280
0071
,
12000
01200
002716
00162
G:=sub<GL(4,GF(29))| [10,22,0,0,7,1,0,0,0,0,24,24,0,0,11,5],[19,10,0,0,22,10,0,0,0,0,28,7,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,27,16,0,0,16,2] >;

D28⋊C4 in GAP, Magma, Sage, TeX

D_{28}\rtimes C_4
% in TeX

G:=Group("D28:C4");
// GroupNames label

G:=SmallGroup(224,88);
// by ID

G=gap.SmallGroup(224,88);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,188,50,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^15,c*b*c^-1=a^14*b>;
// generators/relations

׿
×
𝔽