Copied to
clipboard

G = C4×C7⋊D4order 224 = 25·7

Direct product of C4 and C7⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C7⋊D4, C288D4, C23.22D14, C74(C4×D4), D144(C2×C4), C222(C4×D7), (C22×C4)⋊2D7, D14⋊C418C2, (C22×C28)⋊9C2, Dic72(C2×C4), C14.41(C2×D4), Dic7⋊C418C2, (C4×Dic7)⋊16C2, C2.5(C4○D28), (C2×C4).103D14, C23.D714C2, C14.17(C4○D4), (C2×C28).77C22, C14.19(C22×C4), (C2×C14).46C23, C22.24(C22×D7), (C22×C14).38C22, (C2×Dic7).36C22, (C22×D7).24C22, (C2×C4×D7)⋊14C2, C2.20(C2×C4×D7), (C2×C14)⋊5(C2×C4), C2.3(C2×C7⋊D4), (C2×C7⋊D4).7C2, SmallGroup(224,123)

Series: Derived Chief Lower central Upper central

C1C14 — C4×C7⋊D4
C1C7C14C2×C14C22×D7C2×C7⋊D4 — C4×C7⋊D4
C7C14 — C4×C7⋊D4
C1C2×C4C22×C4

Generators and relations for C4×C7⋊D4
 G = < a,b,c,d | a4=b7=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 334 in 94 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C4×D4, C4×D7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C4×Dic7, Dic7⋊C4, D14⋊C4, C23.D7, C2×C4×D7, C2×C7⋊D4, C22×C28, C4×C7⋊D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C7⋊D4, C22×D7, C2×C4×D7, C4○D28, C2×C7⋊D4, C4×C7⋊D4

Smallest permutation representation of C4×C7⋊D4
On 112 points
Generators in S112
(1 43 15 29)(2 44 16 30)(3 45 17 31)(4 46 18 32)(5 47 19 33)(6 48 20 34)(7 49 21 35)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)(57 99 71 85)(58 100 72 86)(59 101 73 87)(60 102 74 88)(61 103 75 89)(62 104 76 90)(63 105 77 91)(64 106 78 92)(65 107 79 93)(66 108 80 94)(67 109 81 95)(68 110 82 96)(69 111 83 97)(70 112 84 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 57 8 64)(2 63 9 70)(3 62 10 69)(4 61 11 68)(5 60 12 67)(6 59 13 66)(7 58 14 65)(15 71 22 78)(16 77 23 84)(17 76 24 83)(18 75 25 82)(19 74 26 81)(20 73 27 80)(21 72 28 79)(29 85 36 92)(30 91 37 98)(31 90 38 97)(32 89 39 96)(33 88 40 95)(34 87 41 94)(35 86 42 93)(43 99 50 106)(44 105 51 112)(45 104 52 111)(46 103 53 110)(47 102 54 109)(48 101 55 108)(49 100 56 107)
(1 15)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 22)(9 28)(10 27)(11 26)(12 25)(13 24)(14 23)(29 43)(30 49)(31 48)(32 47)(33 46)(34 45)(35 44)(36 50)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(57 78)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 71)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(85 106)(86 112)(87 111)(88 110)(89 109)(90 108)(91 107)(92 99)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)

G:=sub<Sym(112)| (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,99,71,85)(58,100,72,86)(59,101,73,87)(60,102,74,88)(61,103,75,89)(62,104,76,90)(63,105,77,91)(64,106,78,92)(65,107,79,93)(66,108,80,94)(67,109,81,95)(68,110,82,96)(69,111,83,97)(70,112,84,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,57,8,64)(2,63,9,70)(3,62,10,69)(4,61,11,68)(5,60,12,67)(6,59,13,66)(7,58,14,65)(15,71,22,78)(16,77,23,84)(17,76,24,83)(18,75,25,82)(19,74,26,81)(20,73,27,80)(21,72,28,79)(29,85,36,92)(30,91,37,98)(31,90,38,97)(32,89,39,96)(33,88,40,95)(34,87,41,94)(35,86,42,93)(43,99,50,106)(44,105,51,112)(45,104,52,111)(46,103,53,110)(47,102,54,109)(48,101,55,108)(49,100,56,107), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,22)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(57,78)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,71)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,106)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,99)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)>;

G:=Group( (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,99,71,85)(58,100,72,86)(59,101,73,87)(60,102,74,88)(61,103,75,89)(62,104,76,90)(63,105,77,91)(64,106,78,92)(65,107,79,93)(66,108,80,94)(67,109,81,95)(68,110,82,96)(69,111,83,97)(70,112,84,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,57,8,64)(2,63,9,70)(3,62,10,69)(4,61,11,68)(5,60,12,67)(6,59,13,66)(7,58,14,65)(15,71,22,78)(16,77,23,84)(17,76,24,83)(18,75,25,82)(19,74,26,81)(20,73,27,80)(21,72,28,79)(29,85,36,92)(30,91,37,98)(31,90,38,97)(32,89,39,96)(33,88,40,95)(34,87,41,94)(35,86,42,93)(43,99,50,106)(44,105,51,112)(45,104,52,111)(46,103,53,110)(47,102,54,109)(48,101,55,108)(49,100,56,107), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,22)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(57,78)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,71)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,106)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,99)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100) );

G=PermutationGroup([[(1,43,15,29),(2,44,16,30),(3,45,17,31),(4,46,18,32),(5,47,19,33),(6,48,20,34),(7,49,21,35),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42),(57,99,71,85),(58,100,72,86),(59,101,73,87),(60,102,74,88),(61,103,75,89),(62,104,76,90),(63,105,77,91),(64,106,78,92),(65,107,79,93),(66,108,80,94),(67,109,81,95),(68,110,82,96),(69,111,83,97),(70,112,84,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,57,8,64),(2,63,9,70),(3,62,10,69),(4,61,11,68),(5,60,12,67),(6,59,13,66),(7,58,14,65),(15,71,22,78),(16,77,23,84),(17,76,24,83),(18,75,25,82),(19,74,26,81),(20,73,27,80),(21,72,28,79),(29,85,36,92),(30,91,37,98),(31,90,38,97),(32,89,39,96),(33,88,40,95),(34,87,41,94),(35,86,42,93),(43,99,50,106),(44,105,51,112),(45,104,52,111),(46,103,53,110),(47,102,54,109),(48,101,55,108),(49,100,56,107)], [(1,15),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,22),(9,28),(10,27),(11,26),(12,25),(13,24),(14,23),(29,43),(30,49),(31,48),(32,47),(33,46),(34,45),(35,44),(36,50),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(57,78),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,71),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(85,106),(86,112),(87,111),(88,110),(89,109),(90,108),(91,107),(92,99),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100)]])

C4×C7⋊D4 is a maximal subgroup of
C7⋊D4⋊C8  D142M4(2)  Dic7⋊M4(2)  C7⋊C826D4  C5632D4  C56⋊D4  C5618D4  C42.277D14  C24.24D14  C24.27D14  C24.30D14  C24.31D14  C14.82+ 1+4  C14.2- 1+4  C14.102+ 1+4  C14.52- 1+4  C14.112+ 1+4  C14.62- 1+4  C42.93D14  C42.94D14  C42.95D14  C42.97D14  C42.98D14  C42.102D14  C42.104D14  C4×D4×D7  C4211D14  C42.108D14  C4212D14  C42.228D14  C4216D14  C42.229D14  C42.113D14  C42.114D14  C4217D14  C42.118D14  Dic1419D4  Dic1420D4  C14.342+ 1+4  D2819D4  C14.402+ 1+4  C14.732- 1+4  D2820D4  C14.422+ 1+4  C14.432+ 1+4  C14.442+ 1+4  C14.452+ 1+4  C14.1152+ 1+4  D2821D4  D2822D4  Dic1421D4  Dic1422D4  C14.1182+ 1+4  C14.522+ 1+4  C14.532+ 1+4  C14.202- 1+4  C14.212- 1+4  C14.222- 1+4  C14.232- 1+4  C14.772- 1+4  C14.612+ 1+4  C14.622+ 1+4  C14.832- 1+4  C14.642+ 1+4  C14.842- 1+4  C14.662+ 1+4  C14.672+ 1+4  C24.72D14  C24.42D14  C14.452- 1+4  C14.1042- 1+4  (C2×C28)⋊15D4  C14.1452+ 1+4  C14.1072- 1+4  (C2×C28)⋊17D4  C14.1482+ 1+4
C4×C7⋊D4 is a maximal quotient of
(C2×C42).D7  (C2×C42)⋊D7  C24.3D14  C24.4D14  C24.12D14  C24.13D14  Dic7⋊(C4⋊C4)  C22.23(Q8×D7)  D14⋊C46C4  D14⋊C47C4  C42.48D14  C42.51D14  C42.56D14  C42.59D14  C5632D4  C56⋊D4  C5618D4  C56.93D4  C56.50D4  C24.62D14  C23.28D28

68 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G···4L7A7B7C14A···14U28A···28X
order122222224444444···477714···1428···28
size111122141411112214···142222···22···2

68 irreducible representations

dim11111111122222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D7C4○D4D14D14C7⋊D4C4×D7C4○D28
kernelC4×C7⋊D4C4×Dic7Dic7⋊C4D14⋊C4C23.D7C2×C4×D7C2×C7⋊D4C22×C28C7⋊D4C28C22×C4C14C2×C4C23C4C22C2
# reps11111111823263121212

Matrix representation of C4×C7⋊D4 in GL4(𝔽29) generated by

17000
01700
00120
00012
,
282800
5400
001828
0010
,
0800
11000
00112
002618
,
02100
18000
00280
00111
G:=sub<GL(4,GF(29))| [17,0,0,0,0,17,0,0,0,0,12,0,0,0,0,12],[28,5,0,0,28,4,0,0,0,0,18,1,0,0,28,0],[0,11,0,0,8,0,0,0,0,0,11,26,0,0,2,18],[0,18,0,0,21,0,0,0,0,0,28,11,0,0,0,1] >;

C4×C7⋊D4 in GAP, Magma, Sage, TeX

C_4\times C_7\rtimes D_4
% in TeX

G:=Group("C4xC7:D4");
// GroupNames label

G:=SmallGroup(224,123);
// by ID

G=gap.SmallGroup(224,123);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^7=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽