Copied to
clipboard

G = D7×C4⋊C4order 224 = 25·7

Direct product of D7 and C4⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×C4⋊C4, D14.Q8, D14.11D4, C43(C4×D7), C281(C2×C4), (C4×D7)⋊1C4, C2.3(D4×D7), C2.2(Q8×D7), C4⋊Dic711C2, Dic73(C2×C4), D14.8(C2×C4), C14.23(C2×D4), (C2×C4).30D14, C14.12(C2×Q8), Dic7⋊C411C2, C14.9(C22×C4), (C2×C28).23C22, (C2×C14).32C23, C22.16(C22×D7), (C2×Dic7).29C22, (C22×D7).34C22, C71(C2×C4⋊C4), (C7×C4⋊C4)⋊2C2, (C2×C4×D7).1C2, C2.11(C2×C4×D7), SmallGroup(224,86)

Series: Derived Chief Lower central Upper central

C1C14 — D7×C4⋊C4
C1C7C14C2×C14C22×D7C2×C4×D7 — D7×C4⋊C4
C7C14 — D7×C4⋊C4
C1C22C4⋊C4

Generators and relations for D7×C4⋊C4
 G = < a,b,c,d | a7=b2=c4=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 342 in 92 conjugacy classes, 49 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, C23, D7, C14, C4⋊C4, C4⋊C4, C22×C4, Dic7, Dic7, C28, C28, D14, C2×C14, C2×C4⋊C4, C4×D7, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, Dic7⋊C4, C4⋊Dic7, C7×C4⋊C4, C2×C4×D7, C2×C4×D7, D7×C4⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C4⋊C4, C22×C4, C2×D4, C2×Q8, D14, C2×C4⋊C4, C4×D7, C22×D7, C2×C4×D7, D4×D7, Q8×D7, D7×C4⋊C4

Smallest permutation representation of D7×C4⋊C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 14)(7 13)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(29 38)(30 37)(31 36)(32 42)(33 41)(34 40)(35 39)(43 52)(44 51)(45 50)(46 56)(47 55)(48 54)(49 53)(57 66)(58 65)(59 64)(60 70)(61 69)(62 68)(63 67)(71 80)(72 79)(73 78)(74 84)(75 83)(76 82)(77 81)(85 94)(86 93)(87 92)(88 98)(89 97)(90 96)(91 95)(99 108)(100 107)(101 106)(102 112)(103 111)(104 110)(105 109)
(1 83 13 76)(2 84 14 77)(3 78 8 71)(4 79 9 72)(5 80 10 73)(6 81 11 74)(7 82 12 75)(15 64 22 57)(16 65 23 58)(17 66 24 59)(18 67 25 60)(19 68 26 61)(20 69 27 62)(21 70 28 63)(29 106 36 99)(30 107 37 100)(31 108 38 101)(32 109 39 102)(33 110 40 103)(34 111 41 104)(35 112 42 105)(43 92 50 85)(44 93 51 86)(45 94 52 87)(46 95 53 88)(47 96 54 89)(48 97 55 90)(49 98 56 91)
(1 48 20 34)(2 49 21 35)(3 43 15 29)(4 44 16 30)(5 45 17 31)(6 46 18 32)(7 47 19 33)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)(57 106 71 92)(58 107 72 93)(59 108 73 94)(60 109 74 95)(61 110 75 96)(62 111 76 97)(63 112 77 98)(64 99 78 85)(65 100 79 86)(66 101 80 87)(67 102 81 88)(68 103 82 89)(69 104 83 90)(70 105 84 91)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,94)(86,93)(87,92)(88,98)(89,97)(90,96)(91,95)(99,108)(100,107)(101,106)(102,112)(103,111)(104,110)(105,109), (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,48,20,34)(2,49,21,35)(3,43,15,29)(4,44,16,30)(5,45,17,31)(6,46,18,32)(7,47,19,33)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,94)(86,93)(87,92)(88,98)(89,97)(90,96)(91,95)(99,108)(100,107)(101,106)(102,112)(103,111)(104,110)(105,109), (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,48,20,34)(2,49,21,35)(3,43,15,29)(4,44,16,30)(5,45,17,31)(6,46,18,32)(7,47,19,33)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,14),(7,13),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(29,38),(30,37),(31,36),(32,42),(33,41),(34,40),(35,39),(43,52),(44,51),(45,50),(46,56),(47,55),(48,54),(49,53),(57,66),(58,65),(59,64),(60,70),(61,69),(62,68),(63,67),(71,80),(72,79),(73,78),(74,84),(75,83),(76,82),(77,81),(85,94),(86,93),(87,92),(88,98),(89,97),(90,96),(91,95),(99,108),(100,107),(101,106),(102,112),(103,111),(104,110),(105,109)], [(1,83,13,76),(2,84,14,77),(3,78,8,71),(4,79,9,72),(5,80,10,73),(6,81,11,74),(7,82,12,75),(15,64,22,57),(16,65,23,58),(17,66,24,59),(18,67,25,60),(19,68,26,61),(20,69,27,62),(21,70,28,63),(29,106,36,99),(30,107,37,100),(31,108,38,101),(32,109,39,102),(33,110,40,103),(34,111,41,104),(35,112,42,105),(43,92,50,85),(44,93,51,86),(45,94,52,87),(46,95,53,88),(47,96,54,89),(48,97,55,90),(49,98,56,91)], [(1,48,20,34),(2,49,21,35),(3,43,15,29),(4,44,16,30),(5,45,17,31),(6,46,18,32),(7,47,19,33),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42),(57,106,71,92),(58,107,72,93),(59,108,73,94),(60,109,74,95),(61,110,75,96),(62,111,76,97),(63,112,77,98),(64,99,78,85),(65,100,79,86),(66,101,80,87),(67,102,81,88),(68,103,82,89),(69,104,83,90),(70,105,84,91)]])

D7×C4⋊C4 is a maximal subgroup of
D4⋊(C4×D7)  D14.D8  D14.SD16  Q8⋊(C4×D7)  D14.1SD16  D14.Q16  C8⋊(C4×D7)  D14.2SD16  D14.4SD16  C56⋊(C2×C4)  D14.5D8  D14.2Q16  C14.82+ 1+4  C14.2- 1+4  C14.102+ 1+4  C42.91D14  C42.94D14  C42.95D14  C4×D4×D7  C42.108D14  D2824D4  C42.113D14  C4×Q8×D7  C42.126D14  D2810Q8  C42.132D14  C14.722- 1+4  C14.732- 1+4  C14.432+ 1+4  C14.172- 1+4  D2822D4  C14.1182+ 1+4  C14.522+ 1+4  C14.202- 1+4  C14.212- 1+4  C14.822- 1+4  C14.832- 1+4  C14.642+ 1+4  C42.148D14  D287Q8  C42.150D14  C42.151D14  C42.152D14  C42.153D14  C42.161D14  C42.162D14  C42.163D14  D2812D4  C42.174D14  D289Q8
D7×C4⋊C4 is a maximal quotient of
C14.(C4×Q8)  Dic7⋊C42  C7⋊(C428C4)  D14⋊(C4⋊C4)  D14⋊C4⋊C4  C28⋊M4(2)  C42.30D14  (C8×D7)⋊C4  C8⋊(C4×D7)  C8.27(C4×D7)  C56⋊(C2×C4)  M4(2).25D14  Dic7⋊(C4⋊C4)  (C4×Dic7)⋊8C4  C4⋊(D14⋊C4)  D14⋊C46C4

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4L7A7B7C14A···14I28A···28R
order122222224···44···477714···1428···28
size111177772···214···142222···24···4

50 irreducible representations

dim1111112222244
type++++++-+++-
imageC1C2C2C2C2C4D4Q8D7D14C4×D7D4×D7Q8×D7
kernelD7×C4⋊C4Dic7⋊C4C4⋊Dic7C7×C4⋊C4C2×C4×D7C4×D7D14D14C4⋊C4C2×C4C4C2C2
# reps12113822391233

Matrix representation of D7×C4⋊C4 in GL4(𝔽29) generated by

0100
28300
0010
0001
,
0100
1000
00280
00028
,
28000
02800
00012
00120
,
12000
01200
0001
00280
G:=sub<GL(4,GF(29))| [0,28,0,0,1,3,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,0,12,0,0,12,0],[12,0,0,0,0,12,0,0,0,0,0,28,0,0,1,0] >;

D7×C4⋊C4 in GAP, Magma, Sage, TeX

D_7\times C_4\rtimes C_4
% in TeX

G:=Group("D7xC4:C4");
// GroupNames label

G:=SmallGroup(224,86);
// by ID

G=gap.SmallGroup(224,86);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,188,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^4=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽