Copied to
clipboard

G = C4⋊C47D7order 224 = 25·7

1st semidirect product of C4⋊C4 and D7 acting through Inn(C4⋊C4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C47D7, (C4×D7)⋊2C4, C4.14(C4×D7), C28.11(C2×C4), D14⋊C4.4C2, C4⋊Dic712C2, D14.4(C2×C4), (C2×C4).44D14, C73(C42⋊C2), (C4×Dic7)⋊13C2, Dic7.9(C2×C4), C14.26(C4○D4), C2.4(D42D7), (C2×C14).33C23, C14.10(C22×C4), (C2×C28).56C22, C2.1(Q82D7), C22.17(C22×D7), (C2×Dic7).30C22, (C22×D7).19C22, (C7×C4⋊C4)⋊3C2, (C2×C4×D7).2C2, C2.12(C2×C4×D7), SmallGroup(224,87)

Series: Derived Chief Lower central Upper central

C1C14 — C4⋊C47D7
C1C7C14C2×C14C22×D7C2×C4×D7 — C4⋊C47D7
C7C14 — C4⋊C47D7
C1C22C4⋊C4

Generators and relations for C4⋊C47D7
 G = < a,b,c,d | a4=b4=c7=d2=1, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 278 in 76 conjugacy classes, 41 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C42⋊C2, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C4×Dic7, C4⋊Dic7, D14⋊C4, C7×C4⋊C4, C2×C4×D7, C4⋊C47D7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, D14, C42⋊C2, C4×D7, C22×D7, C2×C4×D7, D42D7, Q82D7, C4⋊C47D7

Smallest permutation representation of C4⋊C47D7
On 112 points
Generators in S112
(1 83 13 76)(2 84 14 77)(3 78 8 71)(4 79 9 72)(5 80 10 73)(6 81 11 74)(7 82 12 75)(15 64 22 57)(16 65 23 58)(17 66 24 59)(18 67 25 60)(19 68 26 61)(20 69 27 62)(21 70 28 63)(29 106 36 99)(30 107 37 100)(31 108 38 101)(32 109 39 102)(33 110 40 103)(34 111 41 104)(35 112 42 105)(43 92 50 85)(44 93 51 86)(45 94 52 87)(46 95 53 88)(47 96 54 89)(48 97 55 90)(49 98 56 91)
(1 48 20 34)(2 49 21 35)(3 43 15 29)(4 44 16 30)(5 45 17 31)(6 46 18 32)(7 47 19 33)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)(57 106 71 92)(58 107 72 93)(59 108 73 94)(60 109 74 95)(61 110 75 96)(62 111 76 97)(63 112 77 98)(64 99 78 85)(65 100 79 86)(66 101 80 87)(67 102 81 88)(68 103 82 89)(69 104 83 90)(70 105 84 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 38)(30 37)(31 36)(32 42)(33 41)(34 40)(35 39)(43 52)(44 51)(45 50)(46 56)(47 55)(48 54)(49 53)(57 59)(60 63)(61 62)(64 66)(67 70)(68 69)(71 73)(74 77)(75 76)(78 80)(81 84)(82 83)(85 94)(86 93)(87 92)(88 98)(89 97)(90 96)(91 95)(99 108)(100 107)(101 106)(102 112)(103 111)(104 110)(105 109)

G:=sub<Sym(112)| (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,48,20,34)(2,49,21,35)(3,43,15,29)(4,44,16,30)(5,45,17,31)(6,46,18,32)(7,47,19,33)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,94)(86,93)(87,92)(88,98)(89,97)(90,96)(91,95)(99,108)(100,107)(101,106)(102,112)(103,111)(104,110)(105,109)>;

G:=Group( (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,48,20,34)(2,49,21,35)(3,43,15,29)(4,44,16,30)(5,45,17,31)(6,46,18,32)(7,47,19,33)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,94)(86,93)(87,92)(88,98)(89,97)(90,96)(91,95)(99,108)(100,107)(101,106)(102,112)(103,111)(104,110)(105,109) );

G=PermutationGroup([[(1,83,13,76),(2,84,14,77),(3,78,8,71),(4,79,9,72),(5,80,10,73),(6,81,11,74),(7,82,12,75),(15,64,22,57),(16,65,23,58),(17,66,24,59),(18,67,25,60),(19,68,26,61),(20,69,27,62),(21,70,28,63),(29,106,36,99),(30,107,37,100),(31,108,38,101),(32,109,39,102),(33,110,40,103),(34,111,41,104),(35,112,42,105),(43,92,50,85),(44,93,51,86),(45,94,52,87),(46,95,53,88),(47,96,54,89),(48,97,55,90),(49,98,56,91)], [(1,48,20,34),(2,49,21,35),(3,43,15,29),(4,44,16,30),(5,45,17,31),(6,46,18,32),(7,47,19,33),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42),(57,106,71,92),(58,107,72,93),(59,108,73,94),(60,109,74,95),(61,110,75,96),(62,111,76,97),(63,112,77,98),(64,99,78,85),(65,100,79,86),(66,101,80,87),(67,102,81,88),(68,103,82,89),(69,104,83,90),(70,105,84,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,38),(30,37),(31,36),(32,42),(33,41),(34,40),(35,39),(43,52),(44,51),(45,50),(46,56),(47,55),(48,54),(49,53),(57,59),(60,63),(61,62),(64,66),(67,70),(68,69),(71,73),(74,77),(75,76),(78,80),(81,84),(82,83),(85,94),(86,93),(87,92),(88,98),(89,97),(90,96),(91,95),(99,108),(100,107),(101,106),(102,112),(103,111),(104,110),(105,109)]])

C4⋊C47D7 is a maximal subgroup of
(D4×D7)⋊C4  D42D7⋊C4  C8⋊Dic7⋊C2  C561C4⋊C2  (Q8×D7)⋊C4  Q82D7⋊C4  D14⋊C8.C2  (C2×C8).D14  (C8×D7)⋊C4  C8⋊(C4×D7)  C4.Q8⋊D7  C28.(C4○D4)  C8.27(C4×D7)  C56⋊(C2×C4)  C2.D8⋊D7  C2.D87D7  C14.82+ 1+4  C14.52- 1+4  C14.112+ 1+4  D7×C42⋊C2  C42.91D14  C42.97D14  C42.98D14  C4×D42D7  C4211D14  C42.113D14  C42.117D14  C42.125D14  C4×Q82D7  C42.132D14  C42.135D14  C4⋊C421D14  C14.382+ 1+4  C14.452+ 1+4  C14.1152+ 1+4  C22⋊Q825D7  C4⋊C426D14  C14.162- 1+4  C14.532+ 1+4  C14.212- 1+4  C14.222- 1+4  C14.232- 1+4  C14.772- 1+4  C4⋊C4.197D14  C14.1222+ 1+4  C14.622+ 1+4  C14.662+ 1+4  C42.236D14  C42.148D14  C42.237D14  C42.151D14  C42.152D14  C42.153D14  C42.154D14  C4224D14  C42.189D14  C42.162D14  C42.164D14  C42.241D14  C42.174D14  C42.177D14  C42.179D14
C4⋊C47D7 is a maximal quotient of
Dic7.5C42  C7⋊(C425C4)  C14.(C4×D4)  C22.58(D4×D7)  D14⋊C42  C2.(C4×D28)  C42.200D14  C42.202D14  C42.31D14  C4⋊C4×Dic7  (C4×Dic7)⋊9C4  C22.23(Q8×D7)  C4⋊(D14⋊C4)  D14⋊C47C4

50 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H4I4J4K4L4M4N7A7B7C14A···14I28A···28R
order1222224···44444444477714···1428···28
size111114142···27777141414142222···24···4

50 irreducible representations

dim1111111222244
type++++++++-+
imageC1C2C2C2C2C2C4D7C4○D4D14C4×D7D42D7Q82D7
kernelC4⋊C47D7C4×Dic7C4⋊Dic7D14⋊C4C7×C4⋊C4C2×C4×D7C4×D7C4⋊C4C14C2×C4C4C2C2
# reps12121183491233

Matrix representation of C4⋊C47D7 in GL4(𝔽29) generated by

28000
02800
00120
00117
,
12000
01200
00122
00017
,
0100
28700
0010
0001
,
0100
1000
0010
001728
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,12,1,0,0,0,17],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,2,17],[0,28,0,0,1,7,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,17,0,0,0,28] >;

C4⋊C47D7 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_7D_7
% in TeX

G:=Group("C4:C4:7D7");
// GroupNames label

G:=SmallGroup(224,87);
// by ID

G=gap.SmallGroup(224,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,362,188,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^7=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽