Extensions 1→N→G→Q→1 with N=C2 and Q=D42D7

Direct product G=N×Q with N=C2 and Q=D42D7
dρLabelID
C2×D42D7112C2xD4:2D7224,179


Non-split extensions G=N.Q with N=C2 and Q=D42D7
extensionφ:Q→Aut NdρLabelID
C2.1(D42D7) = C23.11D14central extension (φ=1)112C2.1(D4:2D7)224,72
C2.2(D42D7) = Dic74D4central extension (φ=1)112C2.2(D4:2D7)224,76
C2.3(D42D7) = Dic73Q8central extension (φ=1)224C2.3(D4:2D7)224,82
C2.4(D42D7) = C4⋊C47D7central extension (φ=1)112C2.4(D4:2D7)224,87
C2.5(D42D7) = D4×Dic7central extension (φ=1)112C2.5(D4:2D7)224,129
C2.6(D42D7) = C22⋊Dic14central stem extension (φ=1)112C2.6(D4:2D7)224,73
C2.7(D42D7) = C23.D14central stem extension (φ=1)112C2.7(D4:2D7)224,74
C2.8(D42D7) = D14.D4central stem extension (φ=1)112C2.8(D4:2D7)224,78
C2.9(D42D7) = Dic7.D4central stem extension (φ=1)112C2.9(D4:2D7)224,80
C2.10(D42D7) = C22.D28central stem extension (φ=1)112C2.10(D4:2D7)224,81
C2.11(D42D7) = Dic7.Q8central stem extension (φ=1)224C2.11(D4:2D7)224,84
C2.12(D42D7) = C28.3Q8central stem extension (φ=1)224C2.12(D4:2D7)224,85
C2.13(D42D7) = D142Q8central stem extension (φ=1)112C2.13(D4:2D7)224,92
C2.14(D42D7) = C4⋊C4⋊D7central stem extension (φ=1)112C2.14(D4:2D7)224,93
C2.15(D42D7) = C23.18D14central stem extension (φ=1)112C2.15(D4:2D7)224,130
C2.16(D42D7) = C28.17D4central stem extension (φ=1)112C2.16(D4:2D7)224,131
C2.17(D42D7) = C282D4central stem extension (φ=1)112C2.17(D4:2D7)224,133
C2.18(D42D7) = Dic7⋊D4central stem extension (φ=1)112C2.18(D4:2D7)224,134

׿
×
𝔽