Copied to
clipboard

G = C2×D42D7order 224 = 25·7

Direct product of C2 and D42D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D42D7, D45D14, C14.6C24, C28.20C23, D14.2C23, C23.19D14, Dic147C22, Dic7.3C23, (C2×D4)⋊8D7, (D4×C14)⋊6C2, C142(C4○D4), (C2×C4).60D14, (C7×D4)⋊6C22, (C4×D7)⋊4C22, C7⋊D42C22, C2.7(C23×D7), (C2×C14).1C23, C4.20(C22×D7), (C2×Dic14)⋊12C2, (C2×C28).45C22, (C22×Dic7)⋊8C2, (C2×Dic7)⋊9C22, C22.1(C22×D7), (C22×C14).23C22, (C22×D7).29C22, (C2×C4×D7)⋊4C2, C72(C2×C4○D4), (C2×C7⋊D4)⋊10C2, SmallGroup(224,179)

Series: Derived Chief Lower central Upper central

C1C14 — C2×D42D7
C1C7C14D14C22×D7C2×C4×D7 — C2×D42D7
C7C14 — C2×D42D7
C1C22C2×D4

Generators and relations for C2×D42D7
 G = < a,b,c,d,e | a2=b4=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 542 in 164 conjugacy classes, 89 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D7, C14, C14, C14, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C4○D4, Dic14, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×C14, C2×Dic14, C2×C4×D7, D42D7, C22×Dic7, C2×C7⋊D4, D4×C14, C2×D42D7
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, C22×D7, D42D7, C23×D7, C2×D42D7

Smallest permutation representation of C2×D42D7
On 112 points
Generators in S112
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)(57 92 64 85)(58 93 65 86)(59 94 66 87)(60 95 67 88)(61 96 68 89)(62 97 69 90)(63 98 70 91)(71 106 78 99)(72 107 79 100)(73 108 80 101)(74 109 81 102)(75 110 82 103)(76 111 83 104)(77 112 84 105)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 41)(28 42)(57 99)(58 100)(59 101)(60 102)(61 103)(62 104)(63 105)(64 106)(65 107)(66 108)(67 109)(68 110)(69 111)(70 112)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(81 95)(82 96)(83 97)(84 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 35)(30 34)(31 33)(36 42)(37 41)(38 40)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(57 63)(58 62)(59 61)(64 70)(65 69)(66 68)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 91)(86 90)(87 89)(92 98)(93 97)(94 96)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)

G:=sub<Sym(112)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,92,64,85)(58,93,65,86)(59,94,66,87)(60,95,67,88)(61,96,68,89)(62,97,69,90)(63,98,70,91)(71,106,78,99)(72,107,79,100)(73,108,80,101)(74,109,81,102)(75,110,82,103)(76,111,83,104)(77,112,84,105), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,92,64,85)(58,93,65,86)(59,94,66,87)(60,95,67,88)(61,96,68,89)(62,97,69,90)(63,98,70,91)(71,106,78,99)(72,107,79,100)(73,108,80,101)(74,109,81,102)(75,110,82,103)(76,111,83,104)(77,112,84,105), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106) );

G=PermutationGroup([[(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49),(57,92,64,85),(58,93,65,86),(59,94,66,87),(60,95,67,88),(61,96,68,89),(62,97,69,90),(63,98,70,91),(71,106,78,99),(72,107,79,100),(73,108,80,101),(74,109,81,102),(75,110,82,103),(76,111,83,104),(77,112,84,105)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,41),(28,42),(57,99),(58,100),(59,101),(60,102),(61,103),(62,104),(63,105),(64,106),(65,107),(66,108),(67,109),(68,110),(69,111),(70,112),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(81,95),(82,96),(83,97),(84,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,35),(30,34),(31,33),(36,42),(37,41),(38,40),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(57,63),(58,62),(59,61),(64,70),(65,69),(66,68),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,91),(86,90),(87,89),(92,98),(93,97),(94,96),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106)]])

C2×D42D7 is a maximal subgroup of
C23⋊C45D7  M4(2).19D14  D4⋊(C4×D7)  D42D7⋊C4  D43D28  D4.D28  Dic14⋊D4  Dic14.16D4  C42.108D14  D45D28  D46D28  C24.56D14  C24.33D14  C24.34D14  C28⋊(C4○D4)  C14.682- 1+4  Dic1419D4  Dic1420D4  C4⋊C421D14  C14.722- 1+4  C14.402+ 1+4  C14.732- 1+4  C14.792- 1+4  C14.822- 1+4  C4⋊C428D14  C42.233D14  C42.141D14  Dic1410D4  C4226D14  C42.238D14  Dic1411D4  SD16⋊D14  C24.42D14  C14.1042- 1+4  C2×D7×C4○D4  D14.C24
C2×D42D7 is a maximal quotient of
C24.31D14  C14.52- 1+4  C42.102D14  C42.105D14  C42.106D14  D46Dic14  D46D28  C42.229D14  C42.117D14  C42.119D14  C24.56D14  C24.32D14  C24.33D14  C24.35D14  C28⋊(C4○D4)  Dic1419D4  C4⋊C4.178D14  C14.342+ 1+4  C14.352+ 1+4  C14.712- 1+4  C4⋊C421D14  C14.732- 1+4  C14.432+ 1+4  C14.452+ 1+4  C14.462+ 1+4  C14.1152+ 1+4  C14.472+ 1+4  (Q8×Dic7)⋊C2  C22⋊Q825D7  C14.152- 1+4  C14.1182+ 1+4  C14.212- 1+4  C14.232- 1+4  C14.772- 1+4  C14.242- 1+4  C4⋊C4.197D14  C14.802- 1+4  C14.1222+ 1+4  C14.852- 1+4  C42.139D14  C42.234D14  C42.143D14  C42.144D14  C42.166D14  C42.238D14  Dic1411D4  C42.168D14  Dic148Q8  C42.241D14  C42.176D14  C42.177D14  C2×D4×Dic7  C24.42D14

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14U28A···28F
order1222222222444444444477714···1414···1428···28
size111122221414227777141414142222···24···44···4

50 irreducible representations

dim1111111222224
type+++++++++++-
imageC1C2C2C2C2C2C2D7C4○D4D14D14D14D42D7
kernelC2×D42D7C2×Dic14C2×C4×D7D42D7C22×Dic7C2×C7⋊D4D4×C14C2×D4C14C2×C4D4C23C2
# reps11182213431266

Matrix representation of C2×D42D7 in GL4(𝔽29) generated by

1000
0100
00280
00028
,
17000
111200
0010
0001
,
171600
111200
00280
00028
,
1000
0100
00028
0013
,
1000
162800
002628
0083
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[17,11,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[17,11,0,0,16,12,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,28,3],[1,16,0,0,0,28,0,0,0,0,26,8,0,0,28,3] >;

C2×D42D7 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes_2D_7
% in TeX

G:=Group("C2xD4:2D7");
// GroupNames label

G:=SmallGroup(224,179);
// by ID

G=gap.SmallGroup(224,179);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,86,579,159,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽