Copied to
clipboard

G = D14.D4order 224 = 25·7

1st non-split extension by D14 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D14.4D4, C23.4D14, C2.8(D4×D7), D14⋊C45C2, C4⋊Dic74C2, C22⋊C43D7, (C2×C4).6D14, C14.19(C2×D4), C23.D74C2, Dic7⋊C410C2, C14.8(C4○D4), C2.10(C4○D28), C2.8(D42D7), (C2×C28).52C22, (C2×C14).24C23, C71(C22.D4), (C2×Dic7).6C22, C22.42(C22×D7), (C22×C14).13C22, (C22×D7).17C22, (C2×C4×D7)⋊10C2, (C7×C22⋊C4)⋊5C2, (C2×C7⋊D4).3C2, SmallGroup(224,78)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D14.D4
C1C7C14C2×C14C22×D7C2×C4×D7 — D14.D4
C7C2×C14 — D14.D4
C1C22C22⋊C4

Generators and relations for D14.D4
 G = < a,b,c,d | a14=b2=c4=1, d2=a7, bab=a-1, ac=ca, ad=da, cbc-1=a7b, bd=db, dcd-1=a7c-1 >

Subgroups: 326 in 78 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, D14, D14, C2×C14, C2×C14, C22.D4, C4×D7, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×C14, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C2×C4×D7, C2×C7⋊D4, D14.D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, C22×D7, C4○D28, D4×D7, D42D7, D14.D4

Smallest permutation representation of D14.D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 16)(2 15)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(29 92)(30 91)(31 90)(32 89)(33 88)(34 87)(35 86)(36 85)(37 98)(38 97)(39 96)(40 95)(41 94)(42 93)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 84)(52 83)(53 82)(54 81)(55 80)(56 79)(57 105)(58 104)(59 103)(60 102)(61 101)(62 100)(63 99)(64 112)(65 111)(66 110)(67 109)(68 108)(69 107)(70 106)
(1 63 24 100)(2 64 25 101)(3 65 26 102)(4 66 27 103)(5 67 28 104)(6 68 15 105)(7 69 16 106)(8 70 17 107)(9 57 18 108)(10 58 19 109)(11 59 20 110)(12 60 21 111)(13 61 22 112)(14 62 23 99)(29 50 85 71)(30 51 86 72)(31 52 87 73)(32 53 88 74)(33 54 89 75)(34 55 90 76)(35 56 91 77)(36 43 92 78)(37 44 93 79)(38 45 94 80)(39 46 95 81)(40 47 96 82)(41 48 97 83)(42 49 98 84)
(1 54 8 47)(2 55 9 48)(3 56 10 49)(4 43 11 50)(5 44 12 51)(6 45 13 52)(7 46 14 53)(15 80 22 73)(16 81 23 74)(17 82 24 75)(18 83 25 76)(19 84 26 77)(20 71 27 78)(21 72 28 79)(29 59 36 66)(30 60 37 67)(31 61 38 68)(32 62 39 69)(33 63 40 70)(34 64 41 57)(35 65 42 58)(85 110 92 103)(86 111 93 104)(87 112 94 105)(88 99 95 106)(89 100 96 107)(90 101 97 108)(91 102 98 109)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,16)(2,15)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,98)(38,97)(39,96)(40,95)(41,94)(42,93)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,84)(52,83)(53,82)(54,81)(55,80)(56,79)(57,105)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,112)(65,111)(66,110)(67,109)(68,108)(69,107)(70,106), (1,63,24,100)(2,64,25,101)(3,65,26,102)(4,66,27,103)(5,67,28,104)(6,68,15,105)(7,69,16,106)(8,70,17,107)(9,57,18,108)(10,58,19,109)(11,59,20,110)(12,60,21,111)(13,61,22,112)(14,62,23,99)(29,50,85,71)(30,51,86,72)(31,52,87,73)(32,53,88,74)(33,54,89,75)(34,55,90,76)(35,56,91,77)(36,43,92,78)(37,44,93,79)(38,45,94,80)(39,46,95,81)(40,47,96,82)(41,48,97,83)(42,49,98,84), (1,54,8,47)(2,55,9,48)(3,56,10,49)(4,43,11,50)(5,44,12,51)(6,45,13,52)(7,46,14,53)(15,80,22,73)(16,81,23,74)(17,82,24,75)(18,83,25,76)(19,84,26,77)(20,71,27,78)(21,72,28,79)(29,59,36,66)(30,60,37,67)(31,61,38,68)(32,62,39,69)(33,63,40,70)(34,64,41,57)(35,65,42,58)(85,110,92,103)(86,111,93,104)(87,112,94,105)(88,99,95,106)(89,100,96,107)(90,101,97,108)(91,102,98,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,16)(2,15)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,98)(38,97)(39,96)(40,95)(41,94)(42,93)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,84)(52,83)(53,82)(54,81)(55,80)(56,79)(57,105)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,112)(65,111)(66,110)(67,109)(68,108)(69,107)(70,106), (1,63,24,100)(2,64,25,101)(3,65,26,102)(4,66,27,103)(5,67,28,104)(6,68,15,105)(7,69,16,106)(8,70,17,107)(9,57,18,108)(10,58,19,109)(11,59,20,110)(12,60,21,111)(13,61,22,112)(14,62,23,99)(29,50,85,71)(30,51,86,72)(31,52,87,73)(32,53,88,74)(33,54,89,75)(34,55,90,76)(35,56,91,77)(36,43,92,78)(37,44,93,79)(38,45,94,80)(39,46,95,81)(40,47,96,82)(41,48,97,83)(42,49,98,84), (1,54,8,47)(2,55,9,48)(3,56,10,49)(4,43,11,50)(5,44,12,51)(6,45,13,52)(7,46,14,53)(15,80,22,73)(16,81,23,74)(17,82,24,75)(18,83,25,76)(19,84,26,77)(20,71,27,78)(21,72,28,79)(29,59,36,66)(30,60,37,67)(31,61,38,68)(32,62,39,69)(33,63,40,70)(34,64,41,57)(35,65,42,58)(85,110,92,103)(86,111,93,104)(87,112,94,105)(88,99,95,106)(89,100,96,107)(90,101,97,108)(91,102,98,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,16),(2,15),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(29,92),(30,91),(31,90),(32,89),(33,88),(34,87),(35,86),(36,85),(37,98),(38,97),(39,96),(40,95),(41,94),(42,93),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,84),(52,83),(53,82),(54,81),(55,80),(56,79),(57,105),(58,104),(59,103),(60,102),(61,101),(62,100),(63,99),(64,112),(65,111),(66,110),(67,109),(68,108),(69,107),(70,106)], [(1,63,24,100),(2,64,25,101),(3,65,26,102),(4,66,27,103),(5,67,28,104),(6,68,15,105),(7,69,16,106),(8,70,17,107),(9,57,18,108),(10,58,19,109),(11,59,20,110),(12,60,21,111),(13,61,22,112),(14,62,23,99),(29,50,85,71),(30,51,86,72),(31,52,87,73),(32,53,88,74),(33,54,89,75),(34,55,90,76),(35,56,91,77),(36,43,92,78),(37,44,93,79),(38,45,94,80),(39,46,95,81),(40,47,96,82),(41,48,97,83),(42,49,98,84)], [(1,54,8,47),(2,55,9,48),(3,56,10,49),(4,43,11,50),(5,44,12,51),(6,45,13,52),(7,46,14,53),(15,80,22,73),(16,81,23,74),(17,82,24,75),(18,83,25,76),(19,84,26,77),(20,71,27,78),(21,72,28,79),(29,59,36,66),(30,60,37,67),(31,61,38,68),(32,62,39,69),(33,63,40,70),(34,64,41,57),(35,65,42,58),(85,110,92,103),(86,111,93,104),(87,112,94,105),(88,99,95,106),(89,100,96,107),(90,101,97,108),(91,102,98,109)]])

D14.D4 is a maximal subgroup of
C24.27D14  C24.30D14  C24.31D14  C42.93D14  C42.94D14  C42.95D14  C42.99D14  C4212D14  D2824D4  C4216D14  C42.229D14  C42.114D14  C42.116D14  C42.118D14  C42.119D14  C242D14  C24.33D14  C24.35D14  C24.36D14  C14.342+ 1+4  C14.372+ 1+4  C4⋊C421D14  C14.732- 1+4  D2820D4  C14.442+ 1+4  C14.472+ 1+4  C14.492+ 1+4  C14.162- 1+4  D2822D4  C14.202- 1+4  C14.212- 1+4  C14.242- 1+4  C14.582+ 1+4  C14.262- 1+4  D7×C22.D4  C14.822- 1+4  C14.1222+ 1+4  C14.622+ 1+4  C14.832- 1+4  C14.642+ 1+4  C14.842- 1+4  C14.662+ 1+4  C14.852- 1+4  C14.682+ 1+4  C14.862- 1+4  C42.137D14  C42.141D14  D2810D4  C4220D14  C4221D14  C42.234D14  C42.143D14  C42.145D14  C4223D14  C4224D14  C42.189D14  C42.161D14  C42.162D14  C42.165D14
D14.D4 is a maximal quotient of
Dic7⋊C4⋊C4  C4⋊Dic78C4  C2.(C28⋊Q8)  (C2×Dic7).Q8  C22.58(D4×D7)  D14⋊C4⋊C4  (C2×C4).21D28  (C22×D7).9D4  D14.D8  D14.SD16  C8⋊Dic7⋊C2  C561C4⋊C2  D14.1SD16  D14.Q16  D14⋊C8.C2  (C2×C8).D14  C24.4D14  C24.7D14  C24.8D14  C24.9D14  C24.12D14  C24.14D14  C23.16D28

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C14A···14I14J···14O28A···28L
order1222222444444477714···1414···1428···28
size111141414224141428282222···24···44···4

44 irreducible representations

dim1111111122222244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2D4D7C4○D4D14D14C4○D28D4×D7D42D7
kernelD14.D4Dic7⋊C4C4⋊Dic7D14⋊C4C23.D7C7×C22⋊C4C2×C4×D7C2×C7⋊D4D14C22⋊C4C14C2×C4C23C2C2C2
# reps11111111234631233

Matrix representation of D14.D4 in GL4(𝔽29) generated by

28000
02800
0014
00521
,
1000
02800
00211
00248
,
01200
17000
002724
0012
,
17000
01200
00170
00017
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,5,0,0,4,21],[1,0,0,0,0,28,0,0,0,0,21,24,0,0,1,8],[0,17,0,0,12,0,0,0,0,0,27,1,0,0,24,2],[17,0,0,0,0,12,0,0,0,0,17,0,0,0,0,17] >;

D14.D4 in GAP, Magma, Sage, TeX

D_{14}.D_4
% in TeX

G:=Group("D14.D4");
// GroupNames label

G:=SmallGroup(224,78);
// by ID

G=gap.SmallGroup(224,78);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,55,218,188,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^4=1,d^2=a^7,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d^-1=a^7*c^-1>;
// generators/relations

׿
×
𝔽