Copied to
clipboard

G = C28.17D4order 224 = 25·7

17th non-split extension by C28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.17D4, C23.7D14, (C2×D4).6D7, (C4×Dic7)⋊5C2, (D4×C14).5C2, (C2×C4).50D14, C14.48(C2×D4), C4.7(C7⋊D4), C73(C4.4D4), C23.D79C2, (C2×Dic14)⋊10C2, C14.30(C4○D4), (C2×C28).33C22, (C2×C14).51C23, C2.16(D42D7), C22.58(C22×D7), (C22×C14).19C22, (C2×Dic7).18C22, C2.12(C2×C7⋊D4), SmallGroup(224,131)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28.17D4
C1C7C14C2×C14C2×Dic7C4×Dic7 — C28.17D4
C7C2×C14 — C28.17D4
C1C22C2×D4

Generators and relations for C28.17D4
 G = < a,b,c | a28=b4=1, c2=a14, bab-1=a13, cac-1=a-1, cbc-1=a14b-1 >

Subgroups: 254 in 76 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, Dic7, C28, C2×C14, C2×C14, C4.4D4, Dic14, C2×Dic7, C2×C28, C7×D4, C22×C14, C4×Dic7, C23.D7, C2×Dic14, D4×C14, C28.17D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4.4D4, C7⋊D4, C22×D7, D42D7, C2×C7⋊D4, C28.17D4

Smallest permutation representation of C28.17D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 83 49 112)(2 68 50 97)(3 81 51 110)(4 66 52 95)(5 79 53 108)(6 64 54 93)(7 77 55 106)(8 62 56 91)(9 75 29 104)(10 60 30 89)(11 73 31 102)(12 58 32 87)(13 71 33 100)(14 84 34 85)(15 69 35 98)(16 82 36 111)(17 67 37 96)(18 80 38 109)(19 65 39 94)(20 78 40 107)(21 63 41 92)(22 76 42 105)(23 61 43 90)(24 74 44 103)(25 59 45 88)(26 72 46 101)(27 57 47 86)(28 70 48 99)
(1 62 15 76)(2 61 16 75)(3 60 17 74)(4 59 18 73)(5 58 19 72)(6 57 20 71)(7 84 21 70)(8 83 22 69)(9 82 23 68)(10 81 24 67)(11 80 25 66)(12 79 26 65)(13 78 27 64)(14 77 28 63)(29 111 43 97)(30 110 44 96)(31 109 45 95)(32 108 46 94)(33 107 47 93)(34 106 48 92)(35 105 49 91)(36 104 50 90)(37 103 51 89)(38 102 52 88)(39 101 53 87)(40 100 54 86)(41 99 55 85)(42 98 56 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,83,49,112)(2,68,50,97)(3,81,51,110)(4,66,52,95)(5,79,53,108)(6,64,54,93)(7,77,55,106)(8,62,56,91)(9,75,29,104)(10,60,30,89)(11,73,31,102)(12,58,32,87)(13,71,33,100)(14,84,34,85)(15,69,35,98)(16,82,36,111)(17,67,37,96)(18,80,38,109)(19,65,39,94)(20,78,40,107)(21,63,41,92)(22,76,42,105)(23,61,43,90)(24,74,44,103)(25,59,45,88)(26,72,46,101)(27,57,47,86)(28,70,48,99), (1,62,15,76)(2,61,16,75)(3,60,17,74)(4,59,18,73)(5,58,19,72)(6,57,20,71)(7,84,21,70)(8,83,22,69)(9,82,23,68)(10,81,24,67)(11,80,25,66)(12,79,26,65)(13,78,27,64)(14,77,28,63)(29,111,43,97)(30,110,44,96)(31,109,45,95)(32,108,46,94)(33,107,47,93)(34,106,48,92)(35,105,49,91)(36,104,50,90)(37,103,51,89)(38,102,52,88)(39,101,53,87)(40,100,54,86)(41,99,55,85)(42,98,56,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,83,49,112)(2,68,50,97)(3,81,51,110)(4,66,52,95)(5,79,53,108)(6,64,54,93)(7,77,55,106)(8,62,56,91)(9,75,29,104)(10,60,30,89)(11,73,31,102)(12,58,32,87)(13,71,33,100)(14,84,34,85)(15,69,35,98)(16,82,36,111)(17,67,37,96)(18,80,38,109)(19,65,39,94)(20,78,40,107)(21,63,41,92)(22,76,42,105)(23,61,43,90)(24,74,44,103)(25,59,45,88)(26,72,46,101)(27,57,47,86)(28,70,48,99), (1,62,15,76)(2,61,16,75)(3,60,17,74)(4,59,18,73)(5,58,19,72)(6,57,20,71)(7,84,21,70)(8,83,22,69)(9,82,23,68)(10,81,24,67)(11,80,25,66)(12,79,26,65)(13,78,27,64)(14,77,28,63)(29,111,43,97)(30,110,44,96)(31,109,45,95)(32,108,46,94)(33,107,47,93)(34,106,48,92)(35,105,49,91)(36,104,50,90)(37,103,51,89)(38,102,52,88)(39,101,53,87)(40,100,54,86)(41,99,55,85)(42,98,56,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,83,49,112),(2,68,50,97),(3,81,51,110),(4,66,52,95),(5,79,53,108),(6,64,54,93),(7,77,55,106),(8,62,56,91),(9,75,29,104),(10,60,30,89),(11,73,31,102),(12,58,32,87),(13,71,33,100),(14,84,34,85),(15,69,35,98),(16,82,36,111),(17,67,37,96),(18,80,38,109),(19,65,39,94),(20,78,40,107),(21,63,41,92),(22,76,42,105),(23,61,43,90),(24,74,44,103),(25,59,45,88),(26,72,46,101),(27,57,47,86),(28,70,48,99)], [(1,62,15,76),(2,61,16,75),(3,60,17,74),(4,59,18,73),(5,58,19,72),(6,57,20,71),(7,84,21,70),(8,83,22,69),(9,82,23,68),(10,81,24,67),(11,80,25,66),(12,79,26,65),(13,78,27,64),(14,77,28,63),(29,111,43,97),(30,110,44,96),(31,109,45,95),(32,108,46,94),(33,107,47,93),(34,106,48,92),(35,105,49,91),(36,104,50,90),(37,103,51,89),(38,102,52,88),(39,101,53,87),(40,100,54,86),(41,99,55,85),(42,98,56,112)]])

C28.17D4 is a maximal subgroup of
C23.D28  D28.1D4  C28⋊Q8⋊C2  Dic14.D4  (C8×Dic7)⋊C2  D28.D4  (C2×D8).D7  C5611D4  C56.22D4  (C7×Q8).D4  C56.31D4  C56.43D4  D28.38D4  2+ 1+4.D7  C42.106D14  C42.229D14  C42.114D14  C42.115D14  C24.32D14  C24.35D14  C244D14  Dic1419D4  C4⋊C4.178D14  C14.712- 1+4  D2820D4  C14.422+ 1+4  C14.452+ 1+4  C14.492+ 1+4  C14.602+ 1+4  C14.622+ 1+4  C14.842- 1+4  C42.139D14  D7×C4.4D4  C42.141D14  C42.166D14  C4226D14  C42.238D14  C24.41D14  C24.42D14  C14.1052- 1+4  C14.1072- 1+4  (C2×C28)⋊17D4
C28.17D4 is a maximal quotient of
C24.4D14  C23⋊Dic14  C24.10D14  (C2×Dic7)⋊6Q8  (C4×Dic7)⋊9C4  (C2×C28).288D4  C42.62D14  C42.213D14  C28.16D8  C42.72D14  C28.Q16  C42.77D14  C24.19D14  C24.20D14

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I14J···14U28A···28F
order1222224444444477714···1414···1428···28
size111144221414141428282222···24···44···4

44 irreducible representations

dim111112222224
type+++++++++-
imageC1C2C2C2C2D4D7C4○D4D14D14C7⋊D4D42D7
kernelC28.17D4C4×Dic7C23.D7C2×Dic14D4×C14C28C2×D4C14C2×C4C23C4C2
# reps1141123436126

Matrix representation of C28.17D4 in GL4(𝔽29) generated by

24000
02300
002822
00211
,
0100
28000
00173
002012
,
02800
28000
00120
00917
G:=sub<GL(4,GF(29))| [24,0,0,0,0,23,0,0,0,0,28,21,0,0,22,1],[0,28,0,0,1,0,0,0,0,0,17,20,0,0,3,12],[0,28,0,0,28,0,0,0,0,0,12,9,0,0,0,17] >;

C28.17D4 in GAP, Magma, Sage, TeX

C_{28}._{17}D_4
% in TeX

G:=Group("C28.17D4");
// GroupNames label

G:=SmallGroup(224,131);
// by ID

G=gap.SmallGroup(224,131);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,55,506,116,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=1,c^2=a^14,b*a*b^-1=a^13,c*a*c^-1=a^-1,c*b*c^-1=a^14*b^-1>;
// generators/relations

׿
×
𝔽