Copied to
clipboard

G = C282D4order 224 = 25·7

2nd semidirect product of C28 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C282D4, D143D4, C23.8D14, (C2×D4)⋊4D7, (D4×C14)⋊3C2, C74(C4⋊D4), C42(C7⋊D4), C2.26(D4×D7), C4⋊Dic714C2, (C2×C4).51D14, C14.50(C2×D4), C23.D711C2, C14.31(C4○D4), (C2×C14).53C23, (C2×C28).34C22, C2.17(D42D7), C22.60(C22×D7), (C22×C14).20C22, (C2×Dic7).19C22, (C22×D7).26C22, (C2×C4×D7)⋊2C2, (C2×C7⋊D4)⋊5C2, C2.14(C2×C7⋊D4), SmallGroup(224,133)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C282D4
C1C7C14C2×C14C22×D7C2×C4×D7 — C282D4
C7C2×C14 — C282D4
C1C22C2×D4

Generators and relations for C282D4
 G = < a,b,c | a28=b4=c2=1, bab-1=a-1, cac=a13, cbc=b-1 >

Subgroups: 382 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, Dic7, C28, D14, D14, C2×C14, C2×C14, C4⋊D4, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×C14, C4⋊Dic7, C23.D7, C2×C4×D7, C2×C7⋊D4, D4×C14, C282D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C7⋊D4, C22×D7, D4×D7, D42D7, C2×C7⋊D4, C282D4

Smallest permutation representation of C282D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 53 99 65)(2 52 100 64)(3 51 101 63)(4 50 102 62)(5 49 103 61)(6 48 104 60)(7 47 105 59)(8 46 106 58)(9 45 107 57)(10 44 108 84)(11 43 109 83)(12 42 110 82)(13 41 111 81)(14 40 112 80)(15 39 85 79)(16 38 86 78)(17 37 87 77)(18 36 88 76)(19 35 89 75)(20 34 90 74)(21 33 91 73)(22 32 92 72)(23 31 93 71)(24 30 94 70)(25 29 95 69)(26 56 96 68)(27 55 97 67)(28 54 98 66)
(1 15)(2 28)(3 13)(4 26)(5 11)(6 24)(7 9)(8 22)(10 20)(12 18)(14 16)(17 27)(19 25)(21 23)(29 75)(30 60)(31 73)(32 58)(33 71)(34 84)(35 69)(36 82)(37 67)(38 80)(39 65)(40 78)(41 63)(42 76)(43 61)(44 74)(45 59)(46 72)(47 57)(48 70)(49 83)(50 68)(51 81)(52 66)(53 79)(54 64)(55 77)(56 62)(85 99)(86 112)(87 97)(88 110)(89 95)(90 108)(91 93)(92 106)(94 104)(96 102)(98 100)(101 111)(103 109)(105 107)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,53,99,65)(2,52,100,64)(3,51,101,63)(4,50,102,62)(5,49,103,61)(6,48,104,60)(7,47,105,59)(8,46,106,58)(9,45,107,57)(10,44,108,84)(11,43,109,83)(12,42,110,82)(13,41,111,81)(14,40,112,80)(15,39,85,79)(16,38,86,78)(17,37,87,77)(18,36,88,76)(19,35,89,75)(20,34,90,74)(21,33,91,73)(22,32,92,72)(23,31,93,71)(24,30,94,70)(25,29,95,69)(26,56,96,68)(27,55,97,67)(28,54,98,66), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,75)(30,60)(31,73)(32,58)(33,71)(34,84)(35,69)(36,82)(37,67)(38,80)(39,65)(40,78)(41,63)(42,76)(43,61)(44,74)(45,59)(46,72)(47,57)(48,70)(49,83)(50,68)(51,81)(52,66)(53,79)(54,64)(55,77)(56,62)(85,99)(86,112)(87,97)(88,110)(89,95)(90,108)(91,93)(92,106)(94,104)(96,102)(98,100)(101,111)(103,109)(105,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,53,99,65)(2,52,100,64)(3,51,101,63)(4,50,102,62)(5,49,103,61)(6,48,104,60)(7,47,105,59)(8,46,106,58)(9,45,107,57)(10,44,108,84)(11,43,109,83)(12,42,110,82)(13,41,111,81)(14,40,112,80)(15,39,85,79)(16,38,86,78)(17,37,87,77)(18,36,88,76)(19,35,89,75)(20,34,90,74)(21,33,91,73)(22,32,92,72)(23,31,93,71)(24,30,94,70)(25,29,95,69)(26,56,96,68)(27,55,97,67)(28,54,98,66), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,75)(30,60)(31,73)(32,58)(33,71)(34,84)(35,69)(36,82)(37,67)(38,80)(39,65)(40,78)(41,63)(42,76)(43,61)(44,74)(45,59)(46,72)(47,57)(48,70)(49,83)(50,68)(51,81)(52,66)(53,79)(54,64)(55,77)(56,62)(85,99)(86,112)(87,97)(88,110)(89,95)(90,108)(91,93)(92,106)(94,104)(96,102)(98,100)(101,111)(103,109)(105,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,53,99,65),(2,52,100,64),(3,51,101,63),(4,50,102,62),(5,49,103,61),(6,48,104,60),(7,47,105,59),(8,46,106,58),(9,45,107,57),(10,44,108,84),(11,43,109,83),(12,42,110,82),(13,41,111,81),(14,40,112,80),(15,39,85,79),(16,38,86,78),(17,37,87,77),(18,36,88,76),(19,35,89,75),(20,34,90,74),(21,33,91,73),(22,32,92,72),(23,31,93,71),(24,30,94,70),(25,29,95,69),(26,56,96,68),(27,55,97,67),(28,54,98,66)], [(1,15),(2,28),(3,13),(4,26),(5,11),(6,24),(7,9),(8,22),(10,20),(12,18),(14,16),(17,27),(19,25),(21,23),(29,75),(30,60),(31,73),(32,58),(33,71),(34,84),(35,69),(36,82),(37,67),(38,80),(39,65),(40,78),(41,63),(42,76),(43,61),(44,74),(45,59),(46,72),(47,57),(48,70),(49,83),(50,68),(51,81),(52,66),(53,79),(54,64),(55,77),(56,62),(85,99),(86,112),(87,97),(88,110),(89,95),(90,108),(91,93),(92,106),(94,104),(96,102),(98,100),(101,111),(103,109),(105,107)]])

C282D4 is a maximal subgroup of
D14.D8  D14⋊D8  D14.SD16  D14⋊SD16  C8⋊Dic7⋊C2  C7⋊C81D4  C7⋊C8⋊D4  C561C4⋊C2  D28⋊D4  C566D4  Dic14⋊D4  C5612D4  Dic147D4  C5614D4  D287D4  C568D4  C42.228D14  D2824D4  C42.229D14  C42.113D14  C42.115D14  C42.116D14  C42.117D14  C242D14  C24.33D14  C24.35D14  C24.36D14  D7×C4⋊D4  C4⋊C421D14  C14.382+ 1+4  C14.722- 1+4  C14.732- 1+4  D2820D4  C14.422+ 1+4  C14.432+ 1+4  C14.442+ 1+4  C14.452+ 1+4  C14.1152+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C14.492+ 1+4  C14.612+ 1+4  C14.832- 1+4  C14.642+ 1+4  C14.862- 1+4  D2810D4  Dic1410D4  C42.234D14  C42.144D14  C42.238D14  D2811D4  Dic1411D4  C42.168D14  D4×C7⋊D4  C24.41D14  C24.42D14  (C2×C28)⋊15D4  C14.1072- 1+4  C14.1082- 1+4  C14.1482+ 1+4
C282D4 is a maximal quotient of
C24.3D14  C24.6D14  C24.12D14  C23.16D28  C28⋊(C4⋊C4)  (C2×C28).287D4  C4⋊(D14⋊C4)  (C2×C28).290D4  C42.61D14  D28.23D4  C282D8  Dic149D4  C285SD16  C28⋊Q16  C566D4  C5612D4  C56.23D4  C5614D4  C568D4  C56.44D4  D143Q16  C56.36D4  C56.29D4  C24.19D14  C24.20D14  C24.21D14

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F7A7B7C14A···14I14J···14U28A···28F
order1222222244444477714···1414···1428···28
size111144141422141428282222···24···44···4

44 irreducible representations

dim111111222222244
type++++++++++++-
imageC1C2C2C2C2C2D4D4D7C4○D4D14D14C7⋊D4D4×D7D42D7
kernelC282D4C4⋊Dic7C23.D7C2×C4×D7C2×C7⋊D4D4×C14C28D14C2×D4C14C2×C4C23C4C2C2
# reps1121212232361233

Matrix representation of C282D4 in GL4(𝔽29) generated by

12200
71000
00120
001717
,
201500
10900
002827
0011
,
1000
72800
00280
0011
G:=sub<GL(4,GF(29))| [1,7,0,0,22,10,0,0,0,0,12,17,0,0,0,17],[20,10,0,0,15,9,0,0,0,0,28,1,0,0,27,1],[1,7,0,0,0,28,0,0,0,0,28,1,0,0,0,1] >;

C282D4 in GAP, Magma, Sage, TeX

C_{28}\rtimes_2D_4
% in TeX

G:=Group("C28:2D4");
// GroupNames label

G:=SmallGroup(224,133);
// by ID

G=gap.SmallGroup(224,133);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,188,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^13,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽