Extensions 1→N→G→Q→1 with N=C18 and Q=SD16

Direct product G=N×Q with N=C18 and Q=SD16
dρLabelID
SD16×C18144SD16xC18288,183

Semidirect products G=N:Q with N=C18 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C181SD16 = C2×C72⋊C2φ: SD16/C8C2 ⊆ Aut C18144C18:1SD16288,113
C182SD16 = C2×D4.D9φ: SD16/D4C2 ⊆ Aut C18144C18:2SD16288,141
C183SD16 = C2×Q82D9φ: SD16/Q8C2 ⊆ Aut C18144C18:3SD16288,152

Non-split extensions G=N.Q with N=C18 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C18.1SD16 = C36.45D4φ: SD16/C8C2 ⊆ Aut C18288C18.1SD16288,24
C18.2SD16 = C8⋊Dic9φ: SD16/C8C2 ⊆ Aut C18288C18.2SD16288,25
C18.3SD16 = C2.D72φ: SD16/C8C2 ⊆ Aut C18144C18.3SD16288,28
C18.4SD16 = C4.Dic18φ: SD16/D4C2 ⊆ Aut C18288C18.4SD16288,15
C18.5SD16 = C18.Q16φ: SD16/D4C2 ⊆ Aut C18288C18.5SD16288,16
C18.6SD16 = D4⋊Dic9φ: SD16/D4C2 ⊆ Aut C18144C18.6SD16288,40
C18.7SD16 = C18.D8φ: SD16/Q8C2 ⊆ Aut C18144C18.7SD16288,17
C18.8SD16 = Q82Dic9φ: SD16/Q8C2 ⊆ Aut C18288C18.8SD16288,43
C18.9SD16 = C9×D4⋊C4central extension (φ=1)144C18.9SD16288,52
C18.10SD16 = C9×Q8⋊C4central extension (φ=1)288C18.10SD16288,53
C18.11SD16 = C9×C4.Q8central extension (φ=1)288C18.11SD16288,56

׿
×
𝔽