Copied to
clipboard

G = C18.D8order 288 = 25·32

2nd non-split extension by C18 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D363C4, C18.7D8, C36.2D4, C4.10D36, C12.2D12, C18.7SD16, C4⋊C41D9, C4.2(C4×D9), C12.4(C4×S3), C36.4(C2×C4), C91(D4⋊C4), C2.2(D4⋊D9), (C2×D36).5C2, (C2×C12).40D6, (C2×C18).32D4, (C2×C4).38D18, C3.(C6.D8), C6.11(D6⋊C4), C2.6(D18⋊C4), C6.14(D4⋊S3), C18.4(C22⋊C4), (C2×C36).18C22, C6.8(Q82S3), C2.2(Q82D9), C22.15(C9⋊D4), (C2×C9⋊C8)⋊1C2, (C9×C4⋊C4)⋊1C2, (C3×C4⋊C4).4S3, (C2×C6).70(C3⋊D4), SmallGroup(288,17)

Series: Derived Chief Lower central Upper central

C1C36 — C18.D8
C1C3C9C18C2×C18C2×C36C2×D36 — C18.D8
C9C18C36 — C18.D8
C1C22C2×C4C4⋊C4

Generators and relations for C18.D8
 G = < a,b,c | a18=b8=c2=1, bab-1=cac=a-1, cbc=a9b-1 >

Subgroups: 448 in 75 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, C9, C12, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, D9, C18, C3⋊C8, D12, C2×C12, C2×C12, C22×S3, D4⋊C4, C36, C36, D18, C2×C18, C2×C3⋊C8, C3×C4⋊C4, C2×D12, C9⋊C8, D36, D36, C2×C36, C2×C36, C22×D9, C6.D8, C2×C9⋊C8, C9×C4⋊C4, C2×D36, C18.D8
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, D9, C4×S3, D12, C3⋊D4, D4⋊C4, D18, D6⋊C4, D4⋊S3, Q82S3, C4×D9, D36, C9⋊D4, C6.D8, D18⋊C4, D4⋊D9, Q82D9, C18.D8

Smallest permutation representation of C18.D8
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 107 28 119 89 52 58 135)(2 106 29 118 90 51 59 134)(3 105 30 117 73 50 60 133)(4 104 31 116 74 49 61 132)(5 103 32 115 75 48 62 131)(6 102 33 114 76 47 63 130)(7 101 34 113 77 46 64 129)(8 100 35 112 78 45 65 128)(9 99 36 111 79 44 66 127)(10 98 19 110 80 43 67 144)(11 97 20 109 81 42 68 143)(12 96 21 126 82 41 69 142)(13 95 22 125 83 40 70 141)(14 94 23 124 84 39 71 140)(15 93 24 123 85 38 72 139)(16 92 25 122 86 37 55 138)(17 91 26 121 87 54 56 137)(18 108 27 120 88 53 57 136)
(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(19 67)(20 66)(21 65)(22 64)(23 63)(24 62)(25 61)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 72)(33 71)(34 70)(35 69)(36 68)(37 125)(38 124)(39 123)(40 122)(41 121)(42 120)(43 119)(44 118)(45 117)(46 116)(47 115)(48 114)(49 113)(50 112)(51 111)(52 110)(53 109)(54 126)(73 87)(74 86)(75 85)(76 84)(77 83)(78 82)(79 81)(88 90)(91 142)(92 141)(93 140)(94 139)(95 138)(96 137)(97 136)(98 135)(99 134)(100 133)(101 132)(102 131)(103 130)(104 129)(105 128)(106 127)(107 144)(108 143)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,107,28,119,89,52,58,135)(2,106,29,118,90,51,59,134)(3,105,30,117,73,50,60,133)(4,104,31,116,74,49,61,132)(5,103,32,115,75,48,62,131)(6,102,33,114,76,47,63,130)(7,101,34,113,77,46,64,129)(8,100,35,112,78,45,65,128)(9,99,36,111,79,44,66,127)(10,98,19,110,80,43,67,144)(11,97,20,109,81,42,68,143)(12,96,21,126,82,41,69,142)(13,95,22,125,83,40,70,141)(14,94,23,124,84,39,71,140)(15,93,24,123,85,38,72,139)(16,92,25,122,86,37,55,138)(17,91,26,121,87,54,56,137)(18,108,27,120,88,53,57,136), (2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(19,67)(20,66)(21,65)(22,64)(23,63)(24,62)(25,61)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,72)(33,71)(34,70)(35,69)(36,68)(37,125)(38,124)(39,123)(40,122)(41,121)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,126)(73,87)(74,86)(75,85)(76,84)(77,83)(78,82)(79,81)(88,90)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,135)(99,134)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,144)(108,143)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,107,28,119,89,52,58,135)(2,106,29,118,90,51,59,134)(3,105,30,117,73,50,60,133)(4,104,31,116,74,49,61,132)(5,103,32,115,75,48,62,131)(6,102,33,114,76,47,63,130)(7,101,34,113,77,46,64,129)(8,100,35,112,78,45,65,128)(9,99,36,111,79,44,66,127)(10,98,19,110,80,43,67,144)(11,97,20,109,81,42,68,143)(12,96,21,126,82,41,69,142)(13,95,22,125,83,40,70,141)(14,94,23,124,84,39,71,140)(15,93,24,123,85,38,72,139)(16,92,25,122,86,37,55,138)(17,91,26,121,87,54,56,137)(18,108,27,120,88,53,57,136), (2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(19,67)(20,66)(21,65)(22,64)(23,63)(24,62)(25,61)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,72)(33,71)(34,70)(35,69)(36,68)(37,125)(38,124)(39,123)(40,122)(41,121)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,126)(73,87)(74,86)(75,85)(76,84)(77,83)(78,82)(79,81)(88,90)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,135)(99,134)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,144)(108,143) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,107,28,119,89,52,58,135),(2,106,29,118,90,51,59,134),(3,105,30,117,73,50,60,133),(4,104,31,116,74,49,61,132),(5,103,32,115,75,48,62,131),(6,102,33,114,76,47,63,130),(7,101,34,113,77,46,64,129),(8,100,35,112,78,45,65,128),(9,99,36,111,79,44,66,127),(10,98,19,110,80,43,67,144),(11,97,20,109,81,42,68,143),(12,96,21,126,82,41,69,142),(13,95,22,125,83,40,70,141),(14,94,23,124,84,39,71,140),(15,93,24,123,85,38,72,139),(16,92,25,122,86,37,55,138),(17,91,26,121,87,54,56,137),(18,108,27,120,88,53,57,136)], [(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(19,67),(20,66),(21,65),(22,64),(23,63),(24,62),(25,61),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,72),(33,71),(34,70),(35,69),(36,68),(37,125),(38,124),(39,123),(40,122),(41,121),(42,120),(43,119),(44,118),(45,117),(46,116),(47,115),(48,114),(49,113),(50,112),(51,111),(52,110),(53,109),(54,126),(73,87),(74,86),(75,85),(76,84),(77,83),(78,82),(79,81),(88,90),(91,142),(92,141),(93,140),(94,139),(95,138),(96,137),(97,136),(98,135),(99,134),(100,133),(101,132),(102,131),(103,130),(104,129),(105,128),(106,127),(107,144),(108,143)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A6B6C8A8B8C8D9A9B9C12A···12F18A···18I36A···36R
order12222234444666888899912···1218···1836···36
size1111363622244222181818182224···42···24···4

54 irreducible representations

dim11111222222222222224444
type+++++++++++++++++
imageC1C2C2C2C4S3D4D4D6D8SD16D9C4×S3D12C3⋊D4D18C4×D9D36C9⋊D4D4⋊S3Q82S3D4⋊D9Q82D9
kernelC18.D8C2×C9⋊C8C9×C4⋊C4C2×D36D36C3×C4⋊C4C36C2×C18C2×C12C18C18C4⋊C4C12C12C2×C6C2×C4C4C4C22C6C6C2C2
# reps11114111122322236661133

Matrix representation of C18.D8 in GL4(𝔽73) generated by

34500
283100
0010
0001
,
83400
266500
00048
003841
,
704200
45300
0010
004872
G:=sub<GL(4,GF(73))| [3,28,0,0,45,31,0,0,0,0,1,0,0,0,0,1],[8,26,0,0,34,65,0,0,0,0,0,38,0,0,48,41],[70,45,0,0,42,3,0,0,0,0,1,48,0,0,0,72] >;

C18.D8 in GAP, Magma, Sage, TeX

C_{18}.D_8
% in TeX

G:=Group("C18.D8");
// GroupNames label

G:=SmallGroup(288,17);
// by ID

G=gap.SmallGroup(288,17);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,675,346,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^18=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=a^9*b^-1>;
// generators/relations

׿
×
𝔽