Extensions 1→N→G→Q→1 with N=D18⋊C4 and Q=C2

Direct product G=N×Q with N=D18⋊C4 and Q=C2
dρLabelID
C2×D18⋊C4144C2xD18:C4288,137

Semidirect products G=N:Q with N=D18⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D18⋊C41C2 = C427D9φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:1C2288,85
D18⋊C42C2 = C23.28D18φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:2C2288,139
D18⋊C43C2 = C367D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:3C2288,140
D18⋊C44C2 = C223D36φ: C2/C1C2 ⊆ Out D18⋊C472D18:C4:4C2288,92
D18⋊C45C2 = C23.9D18φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:5C2288,93
D18⋊C46C2 = C22.4D36φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:6C2288,96
D18⋊C47C2 = C4⋊D36φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:7C2288,105
D18⋊C48C2 = C22⋊C4×D9φ: C2/C1C2 ⊆ Out D18⋊C472D18:C4:8C2288,90
D18⋊C49C2 = Dic94D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:9C2288,91
D18⋊C410C2 = D18⋊D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:10C2288,94
D18⋊C411C2 = Dic9.D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:11C2288,95
D18⋊C412C2 = D36⋊C4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:12C2288,103
D18⋊C413C2 = D18.D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:13C2288,104
D18⋊C414C2 = C232D18φ: C2/C1C2 ⊆ Out D18⋊C472D18:C4:14C2288,147
D18⋊C415C2 = Dic9⋊D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:15C2288,149
D18⋊C416C2 = C36.23D4φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4:16C2288,157
D18⋊C417C2 = C4×D36φ: trivial image144D18:C4:17C2288,83
D18⋊C418C2 = C4×C9⋊D4φ: trivial image144D18:C4:18C2288,138

Non-split extensions G=N.Q with N=D18⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D18⋊C4.1C2 = C423D9φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.1C2288,86
D18⋊C4.2C2 = D182Q8φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.2C2288,107
D18⋊C4.3C2 = C4⋊C47D9φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.3C2288,102
D18⋊C4.4C2 = C4⋊C4⋊D9φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.4C2288,108
D18⋊C4.5C2 = D18⋊Q8φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.5C2288,106
D18⋊C4.6C2 = D183Q8φ: C2/C1C2 ⊆ Out D18⋊C4144D18:C4.6C2288,156
D18⋊C4.7C2 = C422D9φ: trivial image144D18:C4.7C2288,82

׿
×
𝔽