Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C3×S3

Direct product G=N×Q with N=C2×Q8 and Q=C3×S3
dρLabelID
S3×C6×Q896S3xC6xQ8288,995

Semidirect products G=N:Q with N=C2×Q8 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1(C3×S3) = C6×GL2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C2×Q848(C2xQ8):1(C3xS3)288,900
(C2×Q8)⋊2(C3×S3) = C3×Q8.D6φ: C3×S3/C3S3 ⊆ Out C2×Q8484(C2xQ8):2(C3xS3)288,901
(C2×Q8)⋊3(C3×S3) = SL2(𝔽3).11D6φ: C3×S3/C3C6 ⊆ Out C2×Q8484(C2xQ8):3(C3xS3)288,923
(C2×Q8)⋊4(C3×S3) = C2×S3×SL2(𝔽3)φ: C3×S3/S3C3 ⊆ Out C2×Q848(C2xQ8):4(C3xS3)288,922
(C2×Q8)⋊5(C3×S3) = C6×Q82S3φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8):5(C3xS3)288,712
(C2×Q8)⋊6(C3×S3) = C3×Q8.11D6φ: C3×S3/C32C2 ⊆ Out C2×Q8484(C2xQ8):6(C3xS3)288,713
(C2×Q8)⋊7(C3×S3) = C3×D63Q8φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8):7(C3xS3)288,717
(C2×Q8)⋊8(C3×S3) = C3×C12.23D4φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8):8(C3xS3)288,718
(C2×Q8)⋊9(C3×S3) = C3×Q8.15D6φ: C3×S3/C32C2 ⊆ Out C2×Q8484(C2xQ8):9(C3xS3)288,997
(C2×Q8)⋊10(C3×S3) = C6×Q83S3φ: trivial image96(C2xQ8):10(C3xS3)288,996

Non-split extensions G=N.Q with N=C2×Q8 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×Q8).1(C3×S3) = C3×Q8⋊Dic3φ: C3×S3/C3S3 ⊆ Out C2×Q896(C2xQ8).1(C3xS3)288,399
(C2×Q8).2(C3×S3) = C6×CSU2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C2×Q896(C2xQ8).2(C3xS3)288,899
(C2×Q8).3(C3×S3) = Dic3×SL2(𝔽3)φ: C3×S3/S3C3 ⊆ Out C2×Q896(C2xQ8).3(C3xS3)288,409
(C2×Q8).4(C3×S3) = C2×Dic3.A4φ: C3×S3/S3C3 ⊆ Out C2×Q896(C2xQ8).4(C3xS3)288,921
(C2×Q8).5(C3×S3) = C3×Q82Dic3φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8).5(C3xS3)288,269
(C2×Q8).6(C3×S3) = C3×C12.10D4φ: C3×S3/C32C2 ⊆ Out C2×Q8484(C2xQ8).6(C3xS3)288,270
(C2×Q8).7(C3×S3) = C6×C3⋊Q16φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8).7(C3xS3)288,714
(C2×Q8).8(C3×S3) = C3×Dic3⋊Q8φ: C3×S3/C32C2 ⊆ Out C2×Q896(C2xQ8).8(C3xS3)288,715
(C2×Q8).9(C3×S3) = C3×Q8×Dic3φ: trivial image96(C2xQ8).9(C3xS3)288,716

׿
×
𝔽