extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(D4⋊S3) = C3⋊D48 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.1(D4:S3) | 288,194 |
C6.2(D4⋊S3) = C32⋊3SD32 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | 4- | C6.2(D4:S3) | 288,196 |
C6.3(D4⋊S3) = C24.49D6 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.3(D4:S3) | 288,197 |
C6.4(D4⋊S3) = C32⋊3Q32 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | 4- | C6.4(D4:S3) | 288,199 |
C6.5(D4⋊S3) = C6.16D24 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.5(D4:S3) | 288,211 |
C6.6(D4⋊S3) = C6.17D24 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 48 | | C6.6(D4:S3) | 288,212 |
C6.7(D4⋊S3) = C6.18D24 | φ: D4⋊S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.7(D4:S3) | 288,223 |
C6.8(D4⋊S3) = C32⋊2D16 | φ: D4⋊S3/D12 → C2 ⊆ Aut C6 | 96 | 4 | C6.8(D4:S3) | 288,193 |
C6.9(D4⋊S3) = D24.S3 | φ: D4⋊S3/D12 → C2 ⊆ Aut C6 | 96 | 4 | C6.9(D4:S3) | 288,195 |
C6.10(D4⋊S3) = C32⋊2Q32 | φ: D4⋊S3/D12 → C2 ⊆ Aut C6 | 96 | 4 | C6.10(D4:S3) | 288,198 |
C6.11(D4⋊S3) = D12⋊3Dic3 | φ: D4⋊S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.11(D4:S3) | 288,210 |
C6.12(D4⋊S3) = C12.8Dic6 | φ: D4⋊S3/D12 → C2 ⊆ Aut C6 | 96 | | C6.12(D4:S3) | 288,224 |
C6.13(D4⋊S3) = C36.Q8 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.13(D4:S3) | 288,14 |
C6.14(D4⋊S3) = C18.D8 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.14(D4:S3) | 288,17 |
C6.15(D4⋊S3) = C9⋊D16 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | 4+ | C6.15(D4:S3) | 288,33 |
C6.16(D4⋊S3) = D8.D9 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | 4- | C6.16(D4:S3) | 288,34 |
C6.17(D4⋊S3) = C9⋊SD32 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | 4+ | C6.17(D4:S3) | 288,35 |
C6.18(D4⋊S3) = C9⋊Q32 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 288 | 4- | C6.18(D4:S3) | 288,36 |
C6.19(D4⋊S3) = D4⋊Dic9 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.19(D4:S3) | 288,40 |
C6.20(D4⋊S3) = C2×D4⋊D9 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.20(D4:S3) | 288,142 |
C6.21(D4⋊S3) = C12.9Dic6 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.21(D4:S3) | 288,282 |
C6.22(D4⋊S3) = C62.113D4 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.22(D4:S3) | 288,284 |
C6.23(D4⋊S3) = C32⋊7D16 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.23(D4:S3) | 288,301 |
C6.24(D4⋊S3) = C32⋊8SD32 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.24(D4:S3) | 288,302 |
C6.25(D4⋊S3) = C32⋊10SD32 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.25(D4:S3) | 288,303 |
C6.26(D4⋊S3) = C32⋊7Q32 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.26(D4:S3) | 288,304 |
C6.27(D4⋊S3) = C62.116D4 | φ: D4⋊S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.27(D4:S3) | 288,307 |
C6.28(D4⋊S3) = C3×C6.Q16 | central extension (φ=1) | 96 | | C6.28(D4:S3) | 288,241 |
C6.29(D4⋊S3) = C3×C6.D8 | central extension (φ=1) | 96 | | C6.29(D4:S3) | 288,243 |
C6.30(D4⋊S3) = C3×C3⋊D16 | central extension (φ=1) | 48 | 4 | C6.30(D4:S3) | 288,260 |
C6.31(D4⋊S3) = C3×D8.S3 | central extension (φ=1) | 48 | 4 | C6.31(D4:S3) | 288,261 |
C6.32(D4⋊S3) = C3×C8.6D6 | central extension (φ=1) | 96 | 4 | C6.32(D4:S3) | 288,262 |
C6.33(D4⋊S3) = C3×C3⋊Q32 | central extension (φ=1) | 96 | 4 | C6.33(D4:S3) | 288,263 |
C6.34(D4⋊S3) = C3×D4⋊Dic3 | central extension (φ=1) | 48 | | C6.34(D4:S3) | 288,266 |