Extensions 1→N→G→Q→1 with N=C6 and Q=D4⋊S3

Direct product G=N×Q with N=C6 and Q=D4⋊S3
dρLabelID
C6×D4⋊S348C6xD4:S3288,702

Semidirect products G=N:Q with N=C6 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C61(D4⋊S3) = C2×C3⋊D24φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C648C6:1(D4:S3)288,472
C62(D4⋊S3) = C2×C322D8φ: D4⋊S3/D12C2 ⊆ Aut C696C6:2(D4:S3)288,469
C63(D4⋊S3) = C2×C327D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6:3(D4:S3)288,788

Non-split extensions G=N.Q with N=C6 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C6.1(D4⋊S3) = C3⋊D48φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C6484+C6.1(D4:S3)288,194
C6.2(D4⋊S3) = C323SD32φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C6964-C6.2(D4:S3)288,196
C6.3(D4⋊S3) = C24.49D6φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C6484+C6.3(D4:S3)288,197
C6.4(D4⋊S3) = C323Q32φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C6964-C6.4(D4:S3)288,199
C6.5(D4⋊S3) = C6.16D24φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C696C6.5(D4:S3)288,211
C6.6(D4⋊S3) = C6.17D24φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C648C6.6(D4:S3)288,212
C6.7(D4⋊S3) = C6.18D24φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C696C6.7(D4:S3)288,223
C6.8(D4⋊S3) = C322D16φ: D4⋊S3/D12C2 ⊆ Aut C6964C6.8(D4:S3)288,193
C6.9(D4⋊S3) = D24.S3φ: D4⋊S3/D12C2 ⊆ Aut C6964C6.9(D4:S3)288,195
C6.10(D4⋊S3) = C322Q32φ: D4⋊S3/D12C2 ⊆ Aut C6964C6.10(D4:S3)288,198
C6.11(D4⋊S3) = D123Dic3φ: D4⋊S3/D12C2 ⊆ Aut C696C6.11(D4:S3)288,210
C6.12(D4⋊S3) = C12.8Dic6φ: D4⋊S3/D12C2 ⊆ Aut C696C6.12(D4:S3)288,224
C6.13(D4⋊S3) = C36.Q8φ: D4⋊S3/C3×D4C2 ⊆ Aut C6288C6.13(D4:S3)288,14
C6.14(D4⋊S3) = C18.D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.14(D4:S3)288,17
C6.15(D4⋊S3) = C9⋊D16φ: D4⋊S3/C3×D4C2 ⊆ Aut C61444+C6.15(D4:S3)288,33
C6.16(D4⋊S3) = D8.D9φ: D4⋊S3/C3×D4C2 ⊆ Aut C61444-C6.16(D4:S3)288,34
C6.17(D4⋊S3) = C9⋊SD32φ: D4⋊S3/C3×D4C2 ⊆ Aut C61444+C6.17(D4:S3)288,35
C6.18(D4⋊S3) = C9⋊Q32φ: D4⋊S3/C3×D4C2 ⊆ Aut C62884-C6.18(D4:S3)288,36
C6.19(D4⋊S3) = D4⋊Dic9φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.19(D4:S3)288,40
C6.20(D4⋊S3) = C2×D4⋊D9φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.20(D4:S3)288,142
C6.21(D4⋊S3) = C12.9Dic6φ: D4⋊S3/C3×D4C2 ⊆ Aut C6288C6.21(D4:S3)288,282
C6.22(D4⋊S3) = C62.113D4φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.22(D4:S3)288,284
C6.23(D4⋊S3) = C327D16φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.23(D4:S3)288,301
C6.24(D4⋊S3) = C328SD32φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.24(D4:S3)288,302
C6.25(D4⋊S3) = C3210SD32φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.25(D4:S3)288,303
C6.26(D4⋊S3) = C327Q32φ: D4⋊S3/C3×D4C2 ⊆ Aut C6288C6.26(D4:S3)288,304
C6.27(D4⋊S3) = C62.116D4φ: D4⋊S3/C3×D4C2 ⊆ Aut C6144C6.27(D4:S3)288,307
C6.28(D4⋊S3) = C3×C6.Q16central extension (φ=1)96C6.28(D4:S3)288,241
C6.29(D4⋊S3) = C3×C6.D8central extension (φ=1)96C6.29(D4:S3)288,243
C6.30(D4⋊S3) = C3×C3⋊D16central extension (φ=1)484C6.30(D4:S3)288,260
C6.31(D4⋊S3) = C3×D8.S3central extension (φ=1)484C6.31(D4:S3)288,261
C6.32(D4⋊S3) = C3×C8.6D6central extension (φ=1)964C6.32(D4:S3)288,262
C6.33(D4⋊S3) = C3×C3⋊Q32central extension (φ=1)964C6.33(D4:S3)288,263
C6.34(D4⋊S3) = C3×D4⋊Dic3central extension (φ=1)48C6.34(D4:S3)288,266

׿
×
𝔽