Copied to
clipboard

G = C9⋊SD32order 288 = 25·32

The semidirect product of C9 and SD32 acting via SD32/Q16=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C93SD32, Q161D9, C36.5D4, C24.8D6, C8.6D18, D72.2C2, C18.10D8, C72.4C22, C9⋊C163C2, (C9×Q16)⋊1C2, C2.6(D4⋊D9), C4.3(C9⋊D4), C3.(C8.6D6), (C3×Q16).1S3, C6.17(D4⋊S3), C12.3(C3⋊D4), SmallGroup(288,35)

Series: Derived Chief Lower central Upper central

C1C72 — C9⋊SD32
C1C3C9C18C36C72D72 — C9⋊SD32
C9C18C36C72 — C9⋊SD32
C1C2C4C8Q16

Generators and relations for C9⋊SD32
 G = < a,b,c | a9=b16=c2=1, bab-1=cac=a-1, cbc=b7 >

72C2
4C4
36C22
24S3
2Q8
18D4
4C12
12D6
8D9
9D8
9C16
2C3×Q8
6D12
4D18
4C36
9SD32
3C3⋊C16
3D24
2D36
2Q8×C9
3C8.6D6

Smallest permutation representation of C9⋊SD32
On 144 points
Generators in S144
(1 121 51 129 85 32 79 103 34)(2 35 104 80 17 86 130 52 122)(3 123 53 131 87 18 65 105 36)(4 37 106 66 19 88 132 54 124)(5 125 55 133 89 20 67 107 38)(6 39 108 68 21 90 134 56 126)(7 127 57 135 91 22 69 109 40)(8 41 110 70 23 92 136 58 128)(9 113 59 137 93 24 71 111 42)(10 43 112 72 25 94 138 60 114)(11 115 61 139 95 26 73 97 44)(12 45 98 74 27 96 140 62 116)(13 117 63 141 81 28 75 99 46)(14 47 100 76 29 82 142 64 118)(15 119 49 143 83 30 77 101 48)(16 33 102 78 31 84 144 50 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 92)(18 83)(19 90)(20 81)(21 88)(22 95)(23 86)(24 93)(25 84)(26 91)(27 82)(28 89)(29 96)(30 87)(31 94)(32 85)(33 114)(34 121)(35 128)(36 119)(37 126)(38 117)(39 124)(40 115)(41 122)(42 113)(43 120)(44 127)(45 118)(46 125)(47 116)(48 123)(49 105)(50 112)(51 103)(52 110)(53 101)(54 108)(55 99)(56 106)(57 97)(58 104)(59 111)(60 102)(61 109)(62 100)(63 107)(64 98)(65 143)(66 134)(67 141)(68 132)(69 139)(70 130)(71 137)(72 144)(73 135)(74 142)(75 133)(76 140)(77 131)(78 138)(79 129)(80 136)

G:=sub<Sym(144)| (1,121,51,129,85,32,79,103,34)(2,35,104,80,17,86,130,52,122)(3,123,53,131,87,18,65,105,36)(4,37,106,66,19,88,132,54,124)(5,125,55,133,89,20,67,107,38)(6,39,108,68,21,90,134,56,126)(7,127,57,135,91,22,69,109,40)(8,41,110,70,23,92,136,58,128)(9,113,59,137,93,24,71,111,42)(10,43,112,72,25,94,138,60,114)(11,115,61,139,95,26,73,97,44)(12,45,98,74,27,96,140,62,116)(13,117,63,141,81,28,75,99,46)(14,47,100,76,29,82,142,64,118)(15,119,49,143,83,30,77,101,48)(16,33,102,78,31,84,144,50,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,92)(18,83)(19,90)(20,81)(21,88)(22,95)(23,86)(24,93)(25,84)(26,91)(27,82)(28,89)(29,96)(30,87)(31,94)(32,85)(33,114)(34,121)(35,128)(36,119)(37,126)(38,117)(39,124)(40,115)(41,122)(42,113)(43,120)(44,127)(45,118)(46,125)(47,116)(48,123)(49,105)(50,112)(51,103)(52,110)(53,101)(54,108)(55,99)(56,106)(57,97)(58,104)(59,111)(60,102)(61,109)(62,100)(63,107)(64,98)(65,143)(66,134)(67,141)(68,132)(69,139)(70,130)(71,137)(72,144)(73,135)(74,142)(75,133)(76,140)(77,131)(78,138)(79,129)(80,136)>;

G:=Group( (1,121,51,129,85,32,79,103,34)(2,35,104,80,17,86,130,52,122)(3,123,53,131,87,18,65,105,36)(4,37,106,66,19,88,132,54,124)(5,125,55,133,89,20,67,107,38)(6,39,108,68,21,90,134,56,126)(7,127,57,135,91,22,69,109,40)(8,41,110,70,23,92,136,58,128)(9,113,59,137,93,24,71,111,42)(10,43,112,72,25,94,138,60,114)(11,115,61,139,95,26,73,97,44)(12,45,98,74,27,96,140,62,116)(13,117,63,141,81,28,75,99,46)(14,47,100,76,29,82,142,64,118)(15,119,49,143,83,30,77,101,48)(16,33,102,78,31,84,144,50,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,92)(18,83)(19,90)(20,81)(21,88)(22,95)(23,86)(24,93)(25,84)(26,91)(27,82)(28,89)(29,96)(30,87)(31,94)(32,85)(33,114)(34,121)(35,128)(36,119)(37,126)(38,117)(39,124)(40,115)(41,122)(42,113)(43,120)(44,127)(45,118)(46,125)(47,116)(48,123)(49,105)(50,112)(51,103)(52,110)(53,101)(54,108)(55,99)(56,106)(57,97)(58,104)(59,111)(60,102)(61,109)(62,100)(63,107)(64,98)(65,143)(66,134)(67,141)(68,132)(69,139)(70,130)(71,137)(72,144)(73,135)(74,142)(75,133)(76,140)(77,131)(78,138)(79,129)(80,136) );

G=PermutationGroup([[(1,121,51,129,85,32,79,103,34),(2,35,104,80,17,86,130,52,122),(3,123,53,131,87,18,65,105,36),(4,37,106,66,19,88,132,54,124),(5,125,55,133,89,20,67,107,38),(6,39,108,68,21,90,134,56,126),(7,127,57,135,91,22,69,109,40),(8,41,110,70,23,92,136,58,128),(9,113,59,137,93,24,71,111,42),(10,43,112,72,25,94,138,60,114),(11,115,61,139,95,26,73,97,44),(12,45,98,74,27,96,140,62,116),(13,117,63,141,81,28,75,99,46),(14,47,100,76,29,82,142,64,118),(15,119,49,143,83,30,77,101,48),(16,33,102,78,31,84,144,50,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,92),(18,83),(19,90),(20,81),(21,88),(22,95),(23,86),(24,93),(25,84),(26,91),(27,82),(28,89),(29,96),(30,87),(31,94),(32,85),(33,114),(34,121),(35,128),(36,119),(37,126),(38,117),(39,124),(40,115),(41,122),(42,113),(43,120),(44,127),(45,118),(46,125),(47,116),(48,123),(49,105),(50,112),(51,103),(52,110),(53,101),(54,108),(55,99),(56,106),(57,97),(58,104),(59,111),(60,102),(61,109),(62,100),(63,107),(64,98),(65,143),(66,134),(67,141),(68,132),(69,139),(70,130),(71,137),(72,144),(73,135),(74,142),(75,133),(76,140),(77,131),(78,138),(79,129),(80,136)]])

39 conjugacy classes

class 1 2A2B 3 4A4B 6 8A8B9A9B9C12A12B12C16A16B16C16D18A18B18C24A24B36A36B36C36D···36I72A···72F
order12234468899912121216161616181818242436363636···3672···72
size117222822222248818181818222444448···84···4

39 irreducible representations

dim11112222222224444
type++++++++++++++
imageC1C2C2C2S3D4D6D8D9C3⋊D4SD32D18C9⋊D4D4⋊S3C8.6D6D4⋊D9C9⋊SD32
kernelC9⋊SD32C9⋊C16D72C9×Q16C3×Q16C36C24C18Q16C12C9C8C4C6C3C2C1
# reps11111112324361236

Matrix representation of C9⋊SD32 in GL4(𝔽433) generated by

3503600
39738600
0010
0001
,
8338600
3635000
002315
00194246
,
3504700
3978300
001288
000432
G:=sub<GL(4,GF(433))| [350,397,0,0,36,386,0,0,0,0,1,0,0,0,0,1],[83,36,0,0,386,350,0,0,0,0,231,194,0,0,5,246],[350,397,0,0,47,83,0,0,0,0,1,0,0,0,288,432] >;

C9⋊SD32 in GAP, Magma, Sage, TeX

C_9\rtimes {\rm SD}_{32}
% in TeX

G:=Group("C9:SD32");
// GroupNames label

G:=SmallGroup(288,35);
// by ID

G=gap.SmallGroup(288,35);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,120,254,135,142,675,346,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^9=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^7>;
// generators/relations

Export

Subgroup lattice of C9⋊SD32 in TeX

׿
×
𝔽