metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C9⋊3SD32, Q16⋊1D9, C36.5D4, C24.8D6, C8.6D18, D72.2C2, C18.10D8, C72.4C22, C9⋊C16⋊3C2, (C9×Q16)⋊1C2, C2.6(D4⋊D9), C4.3(C9⋊D4), C3.(C8.6D6), (C3×Q16).1S3, C6.17(D4⋊S3), C12.3(C3⋊D4), SmallGroup(288,35)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9⋊SD32
G = < a,b,c | a9=b16=c2=1, bab-1=cac=a-1, cbc=b7 >
(1 121 51 129 85 32 79 103 34)(2 35 104 80 17 86 130 52 122)(3 123 53 131 87 18 65 105 36)(4 37 106 66 19 88 132 54 124)(5 125 55 133 89 20 67 107 38)(6 39 108 68 21 90 134 56 126)(7 127 57 135 91 22 69 109 40)(8 41 110 70 23 92 136 58 128)(9 113 59 137 93 24 71 111 42)(10 43 112 72 25 94 138 60 114)(11 115 61 139 95 26 73 97 44)(12 45 98 74 27 96 140 62 116)(13 117 63 141 81 28 75 99 46)(14 47 100 76 29 82 142 64 118)(15 119 49 143 83 30 77 101 48)(16 33 102 78 31 84 144 50 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 92)(18 83)(19 90)(20 81)(21 88)(22 95)(23 86)(24 93)(25 84)(26 91)(27 82)(28 89)(29 96)(30 87)(31 94)(32 85)(33 114)(34 121)(35 128)(36 119)(37 126)(38 117)(39 124)(40 115)(41 122)(42 113)(43 120)(44 127)(45 118)(46 125)(47 116)(48 123)(49 105)(50 112)(51 103)(52 110)(53 101)(54 108)(55 99)(56 106)(57 97)(58 104)(59 111)(60 102)(61 109)(62 100)(63 107)(64 98)(65 143)(66 134)(67 141)(68 132)(69 139)(70 130)(71 137)(72 144)(73 135)(74 142)(75 133)(76 140)(77 131)(78 138)(79 129)(80 136)
G:=sub<Sym(144)| (1,121,51,129,85,32,79,103,34)(2,35,104,80,17,86,130,52,122)(3,123,53,131,87,18,65,105,36)(4,37,106,66,19,88,132,54,124)(5,125,55,133,89,20,67,107,38)(6,39,108,68,21,90,134,56,126)(7,127,57,135,91,22,69,109,40)(8,41,110,70,23,92,136,58,128)(9,113,59,137,93,24,71,111,42)(10,43,112,72,25,94,138,60,114)(11,115,61,139,95,26,73,97,44)(12,45,98,74,27,96,140,62,116)(13,117,63,141,81,28,75,99,46)(14,47,100,76,29,82,142,64,118)(15,119,49,143,83,30,77,101,48)(16,33,102,78,31,84,144,50,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,92)(18,83)(19,90)(20,81)(21,88)(22,95)(23,86)(24,93)(25,84)(26,91)(27,82)(28,89)(29,96)(30,87)(31,94)(32,85)(33,114)(34,121)(35,128)(36,119)(37,126)(38,117)(39,124)(40,115)(41,122)(42,113)(43,120)(44,127)(45,118)(46,125)(47,116)(48,123)(49,105)(50,112)(51,103)(52,110)(53,101)(54,108)(55,99)(56,106)(57,97)(58,104)(59,111)(60,102)(61,109)(62,100)(63,107)(64,98)(65,143)(66,134)(67,141)(68,132)(69,139)(70,130)(71,137)(72,144)(73,135)(74,142)(75,133)(76,140)(77,131)(78,138)(79,129)(80,136)>;
G:=Group( (1,121,51,129,85,32,79,103,34)(2,35,104,80,17,86,130,52,122)(3,123,53,131,87,18,65,105,36)(4,37,106,66,19,88,132,54,124)(5,125,55,133,89,20,67,107,38)(6,39,108,68,21,90,134,56,126)(7,127,57,135,91,22,69,109,40)(8,41,110,70,23,92,136,58,128)(9,113,59,137,93,24,71,111,42)(10,43,112,72,25,94,138,60,114)(11,115,61,139,95,26,73,97,44)(12,45,98,74,27,96,140,62,116)(13,117,63,141,81,28,75,99,46)(14,47,100,76,29,82,142,64,118)(15,119,49,143,83,30,77,101,48)(16,33,102,78,31,84,144,50,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,92)(18,83)(19,90)(20,81)(21,88)(22,95)(23,86)(24,93)(25,84)(26,91)(27,82)(28,89)(29,96)(30,87)(31,94)(32,85)(33,114)(34,121)(35,128)(36,119)(37,126)(38,117)(39,124)(40,115)(41,122)(42,113)(43,120)(44,127)(45,118)(46,125)(47,116)(48,123)(49,105)(50,112)(51,103)(52,110)(53,101)(54,108)(55,99)(56,106)(57,97)(58,104)(59,111)(60,102)(61,109)(62,100)(63,107)(64,98)(65,143)(66,134)(67,141)(68,132)(69,139)(70,130)(71,137)(72,144)(73,135)(74,142)(75,133)(76,140)(77,131)(78,138)(79,129)(80,136) );
G=PermutationGroup([[(1,121,51,129,85,32,79,103,34),(2,35,104,80,17,86,130,52,122),(3,123,53,131,87,18,65,105,36),(4,37,106,66,19,88,132,54,124),(5,125,55,133,89,20,67,107,38),(6,39,108,68,21,90,134,56,126),(7,127,57,135,91,22,69,109,40),(8,41,110,70,23,92,136,58,128),(9,113,59,137,93,24,71,111,42),(10,43,112,72,25,94,138,60,114),(11,115,61,139,95,26,73,97,44),(12,45,98,74,27,96,140,62,116),(13,117,63,141,81,28,75,99,46),(14,47,100,76,29,82,142,64,118),(15,119,49,143,83,30,77,101,48),(16,33,102,78,31,84,144,50,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,92),(18,83),(19,90),(20,81),(21,88),(22,95),(23,86),(24,93),(25,84),(26,91),(27,82),(28,89),(29,96),(30,87),(31,94),(32,85),(33,114),(34,121),(35,128),(36,119),(37,126),(38,117),(39,124),(40,115),(41,122),(42,113),(43,120),(44,127),(45,118),(46,125),(47,116),(48,123),(49,105),(50,112),(51,103),(52,110),(53,101),(54,108),(55,99),(56,106),(57,97),(58,104),(59,111),(60,102),(61,109),(62,100),(63,107),(64,98),(65,143),(66,134),(67,141),(68,132),(69,139),(70,130),(71,137),(72,144),(73,135),(74,142),(75,133),(76,140),(77,131),(78,138),(79,129),(80,136)]])
39 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 6 | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 18A | 18B | 18C | 24A | 24B | 36A | 36B | 36C | 36D | ··· | 36I | 72A | ··· | 72F |
order | 1 | 2 | 2 | 3 | 4 | 4 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 24 | 24 | 36 | 36 | 36 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 72 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 18 | 18 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D8 | D9 | C3⋊D4 | SD32 | D18 | C9⋊D4 | D4⋊S3 | C8.6D6 | D4⋊D9 | C9⋊SD32 |
kernel | C9⋊SD32 | C9⋊C16 | D72 | C9×Q16 | C3×Q16 | C36 | C24 | C18 | Q16 | C12 | C9 | C8 | C4 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 4 | 3 | 6 | 1 | 2 | 3 | 6 |
Matrix representation of C9⋊SD32 ►in GL4(𝔽433) generated by
350 | 36 | 0 | 0 |
397 | 386 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
83 | 386 | 0 | 0 |
36 | 350 | 0 | 0 |
0 | 0 | 231 | 5 |
0 | 0 | 194 | 246 |
350 | 47 | 0 | 0 |
397 | 83 | 0 | 0 |
0 | 0 | 1 | 288 |
0 | 0 | 0 | 432 |
G:=sub<GL(4,GF(433))| [350,397,0,0,36,386,0,0,0,0,1,0,0,0,0,1],[83,36,0,0,386,350,0,0,0,0,231,194,0,0,5,246],[350,397,0,0,47,83,0,0,0,0,1,0,0,0,288,432] >;
C9⋊SD32 in GAP, Magma, Sage, TeX
C_9\rtimes {\rm SD}_{32}
% in TeX
G:=Group("C9:SD32");
// GroupNames label
G:=SmallGroup(288,35);
// by ID
G=gap.SmallGroup(288,35);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,120,254,135,142,675,346,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c|a^9=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^7>;
// generators/relations
Export