Extensions 1→N→G→Q→1 with N=C2×D12 and Q=C6

Direct product G=N×Q with N=C2×D12 and Q=C6
dρLabelID
C2×C6×D1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C2×D12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D12)⋊1C6 = C3×C4⋊D12φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12):1C6288,645
(C2×D12)⋊2C6 = C3×D6⋊D4φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):2C6288,653
(C2×D12)⋊3C6 = C3×Dic3⋊D4φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):3C6288,655
(C2×D12)⋊4C6 = C6×D24φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12):4C6288,674
(C2×D12)⋊5C6 = C3×C127D4φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):5C6288,701
(C2×D12)⋊6C6 = C3×C12⋊D4φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12):6C6288,666
(C2×D12)⋊7C6 = C3×C8⋊D6φ: C6/C3C2 ⊆ Out C2×D12484(C2xD12):7C6288,679
(C2×D12)⋊8C6 = C6×D4⋊S3φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):8C6288,702
(C2×D12)⋊9C6 = C3×C123D4φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):9C6288,711
(C2×D12)⋊10C6 = C3×D4⋊D6φ: C6/C3C2 ⊆ Out C2×D12484(C2xD12):10C6288,720
(C2×D12)⋊11C6 = S3×C6×D4φ: C6/C3C2 ⊆ Out C2×D1248(C2xD12):11C6288,992
(C2×D12)⋊12C6 = C6×Q83S3φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12):12C6288,996
(C2×D12)⋊13C6 = C3×D4○D12φ: C6/C3C2 ⊆ Out C2×D12484(C2xD12):13C6288,999
(C2×D12)⋊14C6 = C6×C4○D12φ: trivial image48(C2xD12):14C6288,991

Non-split extensions G=N.Q with N=C2×D12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D12).1C6 = C3×C2.D24φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).1C6288,255
(C2×D12).2C6 = C3×C427S3φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).2C6288,646
(C2×D12).3C6 = C3×D6.D4φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).3C6288,665
(C2×D12).4C6 = C6×C24⋊C2φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).4C6288,673
(C2×D12).5C6 = C3×C6.D8φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).5C6288,243
(C2×D12).6C6 = C3×C12.46D4φ: C6/C3C2 ⊆ Out C2×D12484(C2xD12).6C6288,257
(C2×D12).7C6 = C3×Dic35D4φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).7C6288,664
(C2×D12).8C6 = C6×Q82S3φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).8C6288,712
(C2×D12).9C6 = C3×C12.23D4φ: C6/C3C2 ⊆ Out C2×D1296(C2xD12).9C6288,718
(C2×D12).10C6 = C12×D12φ: trivial image96(C2xD12).10C6288,644

׿
×
𝔽