Extensions 1→N→G→Q→1 with N=D125S3 and Q=C2

Direct product G=N×Q with N=D125S3 and Q=C2
dρLabelID
C2×D125S396C2xD12:5S3288,943

Semidirect products G=N:Q with N=D125S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D125S31C2 = D24⋊S3φ: C2/C1C2 ⊆ Out D125S3484D12:5S3:1C2288,443
D125S32C2 = D6.1D12φ: C2/C1C2 ⊆ Out D125S3484D12:5S3:2C2288,454
D125S33C2 = D247S3φ: C2/C1C2 ⊆ Out D125S3964-D12:5S3:3C2288,455
D125S34C2 = D129D6φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:4C2288,580
D125S35C2 = D12.22D6φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:5C2288,581
D125S36C2 = D12.12D6φ: C2/C1C2 ⊆ Out D125S3968-D12:5S3:6C2288,595
D125S37C2 = D12.34D6φ: C2/C1C2 ⊆ Out D125S3484-D12:5S3:7C2288,946
D125S38C2 = D1224D6φ: C2/C1C2 ⊆ Out D125S3484D12:5S3:8C2288,955
D125S39C2 = S3×D42S3φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:9C2288,959
D125S310C2 = D1212D6φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:10C2288,961
D125S311C2 = D12.25D6φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:11C2288,963
D125S312C2 = D1215D6φ: C2/C1C2 ⊆ Out D125S3488-D12:5S3:12C2288,967
D125S313C2 = S3×C4○D12φ: trivial image484D12:5S3:13C2288,953

Non-split extensions G=N.Q with N=D125S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D125S3.1C2 = C24.3D6φ: C2/C1C2 ⊆ Out D125S3964-D12:5S3.1C2288,448
D125S3.2C2 = D12.24D6φ: C2/C1C2 ⊆ Out D125S3968-D12:5S3.2C2288,594

׿
×
𝔽