Extensions 1→N→G→Q→1 with N=C2×D36 and Q=C2

Direct product G=N×Q with N=C2×D36 and Q=C2
dρLabelID
C22×D36144C2^2xD36288,354

Semidirect products G=N:Q with N=C2×D36 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D36)⋊1C2 = C426D9φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):1C2288,84
(C2×D36)⋊2C2 = C223D36φ: C2/C1C2 ⊆ Out C2×D3672(C2xD36):2C2288,92
(C2×D36)⋊3C2 = D18⋊D4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):3C2288,94
(C2×D36)⋊4C2 = C4⋊D36φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):4C2288,105
(C2×D36)⋊5C2 = C2×D72φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):5C2288,114
(C2×D36)⋊6C2 = C367D4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):6C2288,140
(C2×D36)⋊7C2 = C8⋊D18φ: C2/C1C2 ⊆ Out C2×D36724+(C2xD36):7C2288,118
(C2×D36)⋊8C2 = C2×D4⋊D9φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):8C2288,142
(C2×D36)⋊9C2 = C36⋊D4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):9C2288,150
(C2×D36)⋊10C2 = D4⋊D18φ: C2/C1C2 ⊆ Out C2×D36724+(C2xD36):10C2288,160
(C2×D36)⋊11C2 = C2×D4×D9φ: C2/C1C2 ⊆ Out C2×D3672(C2xD36):11C2288,356
(C2×D36)⋊12C2 = C2×Q83D9φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36):12C2288,360
(C2×D36)⋊13C2 = D48D18φ: C2/C1C2 ⊆ Out C2×D36724+(C2xD36):13C2288,363
(C2×D36)⋊14C2 = C2×D365C2φ: trivial image144(C2xD36):14C2288,355

Non-split extensions G=N.Q with N=C2×D36 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D36).1C2 = C2.D72φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).1C2288,28
(C2×D36).2C2 = C427D9φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).2C2288,85
(C2×D36).3C2 = D18.D4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).3C2288,104
(C2×D36).4C2 = C2×C72⋊C2φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).4C2288,113
(C2×D36).5C2 = C18.D8φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).5C2288,17
(C2×D36).6C2 = C36.48D4φ: C2/C1C2 ⊆ Out C2×D36724+(C2xD36).6C2288,31
(C2×D36).7C2 = D36⋊C4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).7C2288,103
(C2×D36).8C2 = C2×Q82D9φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).8C2288,152
(C2×D36).9C2 = C36.23D4φ: C2/C1C2 ⊆ Out C2×D36144(C2xD36).9C2288,157
(C2×D36).10C2 = C4×D36φ: trivial image144(C2xD36).10C2288,83

׿
×
𝔽