metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C36.48D4, C4.12D36, C12.4D12, M4(2)⋊3D9, (C2×C4).2D18, (C22×D9).C4, (C2×D36).6C2, (C2×C12).43D6, C9⋊1(C4.D4), C4.Dic9⋊2C2, C22.5(C4×D9), C6.16(D6⋊C4), C4.22(C9⋊D4), (C9×M4(2))⋊7C2, C2.10(D18⋊C4), C18.9(C22⋊C4), (C2×C36).21C22, C3.(C12.46D4), (C3×M4(2)).7S3, C12.109(C3⋊D4), (C2×C6).4(C4×S3), (C2×C18).3(C2×C4), SmallGroup(288,31)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C36.48D4
G = < a,b,c,d | a8=b2=c9=d2=1, bab=a5, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >
Subgroups: 436 in 69 conjugacy classes, 26 normal (24 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, D4, C23, C9, C12, D6, C2×C6, M4(2), M4(2), C2×D4, D9, C18, C18, C3⋊C8, C24, D12, C2×C12, C22×S3, C4.D4, C36, D18, C2×C18, C4.Dic3, C3×M4(2), C2×D12, C9⋊C8, C72, D36, C2×C36, C22×D9, C12.46D4, C4.Dic9, C9×M4(2), C2×D36, C36.48D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D9, C4×S3, D12, C3⋊D4, C4.D4, D18, D6⋊C4, C4×D9, D36, C9⋊D4, C12.46D4, D18⋊C4, C36.48D4
(1 59 23 50 14 68 32 41)(2 60 24 51 15 69 33 42)(3 61 25 52 16 70 34 43)(4 62 26 53 17 71 35 44)(5 63 27 54 18 72 36 45)(6 55 19 46 10 64 28 37)(7 56 20 47 11 65 29 38)(8 57 21 48 12 66 30 39)(9 58 22 49 13 67 31 40)
(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 22)(2 21)(3 20)(4 19)(5 27)(6 26)(7 25)(8 24)(9 23)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 36)(37 62)(38 61)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 63)(46 71)(47 70)(48 69)(49 68)(50 67)(51 66)(52 65)(53 64)(54 72)
G:=sub<Sym(72)| (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,36)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72)>;
G:=Group( (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,36)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72) );
G=PermutationGroup([[(1,59,23,50,14,68,32,41),(2,60,24,51,15,69,33,42),(3,61,25,52,16,70,34,43),(4,62,26,53,17,71,35,44),(5,63,27,54,18,72,36,45),(6,55,19,46,10,64,28,37),(7,56,20,47,11,65,29,38),(8,57,21,48,12,66,30,39),(9,58,22,49,13,67,31,40)], [(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,22),(2,21),(3,20),(4,19),(5,27),(6,26),(7,25),(8,24),(9,23),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,36),(37,62),(38,61),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,63),(46,71),(47,70),(48,69),(49,68),(50,67),(51,66),(52,65),(53,64),(54,72)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 9A | 9B | 9C | 12A | 12B | 12C | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 36G | 36H | 36I | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 6 | 6 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | 36 | 36 | 72 | ··· | 72 |
size | 1 | 1 | 2 | 36 | 36 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | S3 | D4 | D6 | D9 | D12 | C3⋊D4 | C4×S3 | D18 | D36 | C9⋊D4 | C4×D9 | C4.D4 | C12.46D4 | C36.48D4 |
kernel | C36.48D4 | C4.Dic9 | C9×M4(2) | C2×D36 | C22×D9 | C3×M4(2) | C36 | C2×C12 | M4(2) | C12 | C12 | C2×C6 | C2×C4 | C4 | C4 | C22 | C9 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 3 | 2 | 2 | 2 | 3 | 6 | 6 | 6 | 1 | 2 | 6 |
Matrix representation of C36.48D4 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 71 | 0 |
0 | 0 | 0 | 72 | 0 | 71 |
0 | 0 | 4 | 66 | 1 | 0 |
0 | 0 | 7 | 70 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 72 | 0 |
0 | 0 | 0 | 72 | 0 | 72 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 66 | 14 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 66 | 14 |
0 | 0 | 0 | 0 | 7 | 7 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,4,7,0,0,0,72,66,70,0,0,71,0,1,0,0,0,0,71,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,72,0,0,0,0,1,0,72,0,0,0,0,72,0,0,0,0,0,0,72],[16,0,0,0,0,0,0,32,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,16,0,0,0,0,32,0,0,0,0,0,0,0,66,7,0,0,0,0,14,7,0,0,0,0,0,0,66,7,0,0,0,0,14,7] >;
C36.48D4 in GAP, Magma, Sage, TeX
C_{36}._{48}D_4
% in TeX
G:=Group("C36.48D4");
// GroupNames label
G:=SmallGroup(288,31);
// by ID
G=gap.SmallGroup(288,31);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,100,346,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^9=d^2=1,b*a*b=a^5,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations