Extensions 1→N→G→Q→1 with N=C4 and Q=D36

Direct product G=N×Q with N=C4 and Q=D36
dρLabelID
C4×D36144C4xD36288,83

Semidirect products G=N:Q with N=C4 and Q=D36
extensionφ:Q→Aut NdρLabelID
C41D36 = C426D9φ: D36/C36C2 ⊆ Aut C4144C4:1D36288,84
C42D36 = C4⋊D36φ: D36/D18C2 ⊆ Aut C4144C4:2D36288,105

Non-split extensions G=N.Q with N=C4 and Q=D36
extensionφ:Q→Aut NdρLabelID
C4.1D36 = D144φ: D36/C36C2 ⊆ Aut C41442+C4.1D36288,6
C4.2D36 = C144⋊C2φ: D36/C36C2 ⊆ Aut C41442C4.2D36288,7
C4.3D36 = Dic72φ: D36/C36C2 ⊆ Aut C42882-C4.3D36288,8
C4.4D36 = C362Q8φ: D36/C36C2 ⊆ Aut C4288C4.4D36288,79
C4.5D36 = C427D9φ: D36/C36C2 ⊆ Aut C4144C4.5D36288,85
C4.6D36 = C2×Dic36φ: D36/C36C2 ⊆ Aut C4288C4.6D36288,109
C4.7D36 = C2×C72⋊C2φ: D36/C36C2 ⊆ Aut C4144C4.7D36288,113
C4.8D36 = C2×D72φ: D36/C36C2 ⊆ Aut C4144C4.8D36288,114
C4.9D36 = C18.Q16φ: D36/D18C2 ⊆ Aut C4288C4.9D36288,16
C4.10D36 = C18.D8φ: D36/D18C2 ⊆ Aut C4144C4.10D36288,17
C4.11D36 = C4.D36φ: D36/D18C2 ⊆ Aut C41444-C4.11D36288,30
C4.12D36 = C36.48D4φ: D36/D18C2 ⊆ Aut C4724+C4.12D36288,31
C4.13D36 = D182Q8φ: D36/D18C2 ⊆ Aut C4144C4.13D36288,107
C4.14D36 = C8⋊D18φ: D36/D18C2 ⊆ Aut C4724+C4.14D36288,118
C4.15D36 = C8.D18φ: D36/D18C2 ⊆ Aut C41444-C4.15D36288,119
C4.16D36 = C36⋊C8central extension (φ=1)288C4.16D36288,11
C4.17D36 = C424D9central extension (φ=1)722C4.17D36288,12
C4.18D36 = C72.C4central extension (φ=1)1442C4.18D36288,20
C4.19D36 = D18⋊C8central extension (φ=1)144C4.19D36288,27
C4.20D36 = D727C2central extension (φ=1)1442C4.20D36288,115

׿
×
𝔽