extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xC4xC3:S3).1C2 = C3:C8:20D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 24 | 4 | (C2xC4xC3:S3).1C2 | 288,466 |
(C2xC4xC3:S3).2C2 = C62.19C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).2C2 | 288,497 |
(C2xC4xC3:S3).3C2 = C12.30D12 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).3C2 | 288,519 |
(C2xC4xC3:S3).4C2 = C62.70C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).4C2 | 288,548 |
(C2xC4xC3:S3).5C2 = C62.236C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).5C2 | 288,749 |
(C2xC4xC3:S3).6C2 = C12.31D12 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).6C2 | 288,754 |
(C2xC4xC3:S3).7C2 = M4(2)xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 72 | | (C2xC4xC3:S3).7C2 | 288,763 |
(C2xC4xC3:S3).8C2 = C62.261C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).8C2 | 288,803 |
(C2xC4xC3:S3).9C2 = C2xDic3.D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).9C2 | 288,947 |
(C2xC4xC3:S3).10C2 = C2xQ8xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).10C2 | 288,1010 |
(C2xC4xC3:S3).11C2 = C12.78D12 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).11C2 | 288,205 |
(C2xC4xC3:S3).12C2 = C12.60D12 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).12C2 | 288,295 |
(C2xC4xC3:S3).13C2 = C62.6(C2xC4) | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).13C2 | 288,426 |
(C2xC4xC3:S3).14C2 = (C6xC12):2C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).14C2 | 288,429 |
(C2xC4xC3:S3).15C2 = C2xC12.29D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).15C2 | 288,464 |
(C2xC4xC3:S3).16C2 = C2xC12.31D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).16C2 | 288,468 |
(C2xC4xC3:S3).17C2 = C62.35C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).17C2 | 288,513 |
(C2xC4xC3:S3).18C2 = C62.44C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).18C2 | 288,522 |
(C2xC4xC3:S3).19C2 = C4xC6.D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).19C2 | 288,530 |
(C2xC4xC3:S3).20C2 = C62.53C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).20C2 | 288,531 |
(C2xC4xC3:S3).21C2 = C122:16C2 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).21C2 | 288,729 |
(C2xC4xC3:S3).22C2 = C4:C4xC3:S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).22C2 | 288,748 |
(C2xC4xC3:S3).23C2 = C62.240C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).23C2 | 288,753 |
(C2xC4xC3:S3).24C2 = C2xC24:S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 144 | | (C2xC4xC3:S3).24C2 | 288,757 |
(C2xC4xC3:S3).25C2 = C2xC3:S3:3C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).25C2 | 288,929 |
(C2xC4xC3:S3).26C2 = C2xC32:M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).26C2 | 288,930 |
(C2xC4xC3:S3).27C2 = C3:S3:M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 24 | 4 | (C2xC4xC3:S3).27C2 | 288,931 |
(C2xC4xC3:S3).28C2 = C2xC4xC32:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).28C2 | 288,932 |
(C2xC4xC3:S3).29C2 = C2xC4:(C32:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 48 | | (C2xC4xC3:S3).29C2 | 288,933 |
(C2xC4xC3:S3).30C2 = (C6xC12):5C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xC3:S3 | 24 | 4 | (C2xC4xC3:S3).30C2 | 288,934 |
(C2xC4xC3:S3).31C2 = C42xC3:S3 | φ: trivial image | 144 | | (C2xC4xC3:S3).31C2 | 288,728 |
(C2xC4xC3:S3).32C2 = C2xC8xC3:S3 | φ: trivial image | 144 | | (C2xC4xC3:S3).32C2 | 288,756 |