Copied to
clipboard

G = C3⋊S3⋊M4(2)  order 288 = 25·32

2nd semidirect product of C3⋊S3 and M4(2) acting via M4(2)/C2×C4=C2

metabelian, soluble, monomial

Aliases: (C6×C12).11C4, C3⋊S33M4(2), C62.15(C2×C4), C324(C2×M4(2)), C62.C46C2, C322C88C22, C32⋊M4(2)⋊8C2, C3⋊Dic3.31C23, C3⋊S33C88C2, (C4×C3⋊S3).17C4, C4.13(C2×C32⋊C4), (C3×C12).20(C2×C4), (C2×C4).8(C32⋊C4), C2.5(C22×C32⋊C4), C22.6(C2×C32⋊C4), (C4×C3⋊S3).97C22, (C22×C3⋊S3).16C4, C3⋊Dic3.52(C2×C4), (C3×C6).26(C22×C4), (C2×C3⋊Dic3).174C22, (C2×C4×C3⋊S3).27C2, (C2×C3⋊S3).46(C2×C4), SmallGroup(288,931)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3⋊S3⋊M4(2)
C1C32C3×C6C3⋊Dic3C322C8C3⋊S33C8 — C3⋊S3⋊M4(2)
C32C3×C6 — C3⋊S3⋊M4(2)
C1C4C2×C4

Generators and relations for C3⋊S3⋊M4(2)
 G = < a,b,c,d,e | a3=b3=c2=d8=e2=1, ab=ba, cac=a-1, dad-1=ab-1, ae=ea, cbc=b-1, dbd-1=a-1b-1, be=eb, cd=dc, ce=ec, ede=d5 >

Subgroups: 576 in 122 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, M4(2), C22×C4, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×M4(2), C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C2×C4, C322C8, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C3⋊S33C8, C32⋊M4(2), C62.C4, C2×C4×C3⋊S3, C3⋊S3⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C2×M4(2), C32⋊C4, C2×C32⋊C4, C22×C32⋊C4, C3⋊S3⋊M4(2)

Permutation representations of C3⋊S3⋊M4(2)
On 24 points - transitive group 24T624
Generators in S24
(1 22 11)(3 13 24)(5 18 15)(7 9 20)
(1 22 11)(2 23 12)(3 13 24)(4 14 17)(5 18 15)(6 19 16)(7 9 20)(8 10 21)
(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)

G:=sub<Sym(24)| (1,22,11)(3,13,24)(5,18,15)(7,9,20), (1,22,11)(2,23,12)(3,13,24)(4,14,17)(5,18,15)(6,19,16)(7,9,20)(8,10,21), (9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)>;

G:=Group( (1,22,11)(3,13,24)(5,18,15)(7,9,20), (1,22,11)(2,23,12)(3,13,24)(4,14,17)(5,18,15)(6,19,16)(7,9,20)(8,10,21), (9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23) );

G=PermutationGroup([[(1,22,11),(3,13,24),(5,18,15),(7,9,20)], [(1,22,11),(2,23,12),(3,13,24),(4,14,17),(5,18,15),(6,19,16),(7,9,20),(8,10,21)], [(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23)]])

G:=TransitiveGroup(24,624);

36 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A···6F8A···8H12A···12H
order122222334444446···68···812···12
size11299184411299184···418···184···4

36 irreducible representations

dim1111111124444
type++++++++
imageC1C2C2C2C2C4C4C4M4(2)C32⋊C4C2×C32⋊C4C2×C32⋊C4C3⋊S3⋊M4(2)
kernelC3⋊S3⋊M4(2)C3⋊S33C8C32⋊M4(2)C62.C4C2×C4×C3⋊S3C4×C3⋊S3C6×C12C22×C3⋊S3C3⋊S3C2×C4C4C22C1
# reps1222142242428

Matrix representation of C3⋊S3⋊M4(2) in GL4(𝔽5) generated by

0003
0100
0010
3004
,
0003
0410
0400
3004
,
4002
0410
0010
0001
,
0200
4002
0002
0010
,
1000
0400
0040
0001
G:=sub<GL(4,GF(5))| [0,0,0,3,0,1,0,0,0,0,1,0,3,0,0,4],[0,0,0,3,0,4,4,0,0,1,0,0,3,0,0,4],[4,0,0,0,0,4,0,0,0,1,1,0,2,0,0,1],[0,4,0,0,2,0,0,0,0,0,0,1,0,2,2,0],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1] >;

C3⋊S3⋊M4(2) in GAP, Magma, Sage, TeX

C_3\rtimes S_3\rtimes M_4(2)
% in TeX

G:=Group("C3:S3:M4(2)");
// GroupNames label

G:=SmallGroup(288,931);
// by ID

G=gap.SmallGroup(288,931);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,120,422,80,9413,362,12550,1203]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=e^2=1,a*b=b*a,c*a*c=a^-1,d*a*d^-1=a*b^-1,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a^-1*b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽