direct product, metabelian, supersoluble, monomial, A-group
Aliases: C4×C6.D6, C62.52C23, C12⋊7(C4×S3), Dic32⋊25C2, C3⋊S3⋊1C42, C3⋊1(S3×C42), Dic3⋊7(C4×S3), C32⋊3(C2×C42), (C4×Dic3)⋊17S3, (C2×C12).306D6, (Dic3×C12)⋊25C2, (C6×C12).230C22, (C2×Dic3).112D6, (C6×Dic3).154C22, C2.3(C4×S32), (C4×C3⋊S3)⋊6C4, C6.32(S3×C2×C4), (C2×C4).139S32, (C3×C12)⋊16(C2×C4), C22.32(C2×S32), C3⋊Dic3⋊10(C2×C4), (C3×Dic3)⋊9(C2×C4), C2.2(C2×C6.D6), (C3×C6).54(C22×C4), (C2×C6).71(C22×S3), (C2×C6.D6).9C2, (C22×C3⋊S3).69C22, (C2×C3⋊Dic3).129C22, (C2×C4×C3⋊S3).19C2, (C2×C3⋊S3).29(C2×C4), SmallGroup(288,530)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C4×C6.D6 |
Generators and relations for C4×C6.D6
G = < a,b,c,d | a4=b6=d2=1, c6=b3, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c5 >
Subgroups: 786 in 243 conjugacy classes, 92 normal (12 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22×C4, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×C42, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C4×Dic3, C4×Dic3, C4×C12, S3×C2×C4, C6.D6, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, S3×C42, Dic32, Dic3×C12, C2×C6.D6, C2×C4×C3⋊S3, C4×C6.D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C42, C22×C4, C4×S3, C22×S3, C2×C42, S32, S3×C2×C4, C6.D6, C2×S32, S3×C42, C4×S32, C2×C6.D6, C4×C6.D6
(1 33 40 13)(2 34 41 14)(3 35 42 15)(4 36 43 16)(5 25 44 17)(6 26 45 18)(7 27 46 19)(8 28 47 20)(9 29 48 21)(10 30 37 22)(11 31 38 23)(12 32 39 24)
(1 11 9 7 5 3)(2 4 6 8 10 12)(13 23 21 19 17 15)(14 16 18 20 22 24)(25 35 33 31 29 27)(26 28 30 32 34 36)(37 39 41 43 45 47)(38 48 46 44 42 40)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 48)(2 41)(3 46)(4 39)(5 44)(6 37)(7 42)(8 47)(9 40)(10 45)(11 38)(12 43)(13 29)(14 34)(15 27)(16 32)(17 25)(18 30)(19 35)(20 28)(21 33)(22 26)(23 31)(24 36)
G:=sub<Sym(48)| (1,33,40,13)(2,34,41,14)(3,35,42,15)(4,36,43,16)(5,25,44,17)(6,26,45,18)(7,27,46,19)(8,28,47,20)(9,29,48,21)(10,30,37,22)(11,31,38,23)(12,32,39,24), (1,11,9,7,5,3)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,28,30,32,34,36)(37,39,41,43,45,47)(38,48,46,44,42,40), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,29)(14,34)(15,27)(16,32)(17,25)(18,30)(19,35)(20,28)(21,33)(22,26)(23,31)(24,36)>;
G:=Group( (1,33,40,13)(2,34,41,14)(3,35,42,15)(4,36,43,16)(5,25,44,17)(6,26,45,18)(7,27,46,19)(8,28,47,20)(9,29,48,21)(10,30,37,22)(11,31,38,23)(12,32,39,24), (1,11,9,7,5,3)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,28,30,32,34,36)(37,39,41,43,45,47)(38,48,46,44,42,40), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,29)(14,34)(15,27)(16,32)(17,25)(18,30)(19,35)(20,28)(21,33)(22,26)(23,31)(24,36) );
G=PermutationGroup([[(1,33,40,13),(2,34,41,14),(3,35,42,15),(4,36,43,16),(5,25,44,17),(6,26,45,18),(7,27,46,19),(8,28,47,20),(9,29,48,21),(10,30,37,22),(11,31,38,23),(12,32,39,24)], [(1,11,9,7,5,3),(2,4,6,8,10,12),(13,23,21,19,17,15),(14,16,18,20,22,24),(25,35,33,31,29,27),(26,28,30,32,34,36),(37,39,41,43,45,47),(38,48,46,44,42,40)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,48),(2,41),(3,46),(4,39),(5,44),(6,37),(7,42),(8,47),(9,40),(10,45),(11,38),(12,43),(13,29),(14,34),(15,27),(16,32),(17,25),(18,30),(19,35),(20,28),(21,33),(22,26),(23,31),(24,36)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | ··· | 4T | 4U | 4V | 4W | 4X | 6A | ··· | 6F | 6G | 6H | 6I | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 12M | ··· | 12AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 9 | 9 | 9 | 9 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | S3 | D6 | D6 | C4×S3 | C4×S3 | S32 | C6.D6 | C2×S32 | C4×S32 |
kernel | C4×C6.D6 | Dic32 | Dic3×C12 | C2×C6.D6 | C2×C4×C3⋊S3 | C6.D6 | C4×C3⋊S3 | C4×Dic3 | C2×Dic3 | C2×C12 | Dic3 | C12 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 16 | 8 | 2 | 4 | 2 | 16 | 8 | 1 | 2 | 1 | 4 |
Matrix representation of C4×C6.D6 ►in GL6(𝔽13)
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
8 | 5 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 5 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,5,5,0,0,0,0,0,0,8,0,0,0,0,0,5,5,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,12,12] >;
C4×C6.D6 in GAP, Magma, Sage, TeX
C_4\times C_6.D_6
% in TeX
G:=Group("C4xC6.D6");
// GroupNames label
G:=SmallGroup(288,530);
// by ID
G=gap.SmallGroup(288,530);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,64,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^6=d^2=1,c^6=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^5>;
// generators/relations