direct product, metabelian, supersoluble, monomial
Aliases: C2×C12.31D6, C3⋊C8⋊28D6, C6⋊1(C8⋊S3), C12.47(C4×S3), (C3×C6)⋊3M4(2), (C2×C12).302D6, C62.50(C2×C4), C32⋊8(C2×M4(2)), C12.148(C22×S3), (C6×C12).207C22, (C3×C12).149C23, C4.16(C6.D6), C22.13(C6.D6), (C6×C3⋊C8)⋊20C2, (C2×C3⋊C8)⋊12S3, C4.95(C2×S32), C6.28(S3×C2×C4), C3⋊2(C2×C8⋊S3), (C2×C4).135S32, (C4×C3⋊S3).13C4, (C3×C3⋊C8)⋊37C22, (C2×C6).30(C4×S3), (C3×C12).88(C2×C4), C2.6(C2×C6.D6), (C22×C3⋊S3).11C4, (C4×C3⋊S3).90C22, (C2×C3⋊Dic3).20C4, C3⋊Dic3.42(C2×C4), (C3×C6).45(C22×C4), (C2×C4×C3⋊S3).16C2, (C2×C3⋊S3).36(C2×C4), SmallGroup(288,468)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C12.31D6
G = < a,b,c,d | a2=b12=d2=1, c6=b3, ab=ba, ac=ca, ad=da, cbc-1=dbd=b5, dcd=c5 >
Subgroups: 594 in 163 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×M4(2), C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C8⋊S3, C2×C3⋊C8, C2×C24, S3×C2×C4, C3×C3⋊C8, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C2×C8⋊S3, C12.31D6, C6×C3⋊C8, C2×C4×C3⋊S3, C2×C12.31D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, C4×S3, C22×S3, C2×M4(2), S32, C8⋊S3, S3×C2×C4, C6.D6, C2×S32, C2×C8⋊S3, C12.31D6, C2×C6.D6, C2×C12.31D6
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 25)(24 26)
(1 3 5 7 9 11 13 15 17 19 21 23)(2 12 22 8 18 4 14 24 10 20 6 16)(25 27 29 31 33 35 37 39 41 43 45 47)(26 36 46 32 42 28 38 48 34 44 30 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 21)(3 7)(4 12)(5 17)(6 22)(9 13)(10 18)(11 23)(15 19)(16 24)(25 37)(26 42)(27 47)(29 33)(30 38)(31 43)(32 48)(35 39)(36 44)(41 45)
G:=sub<Sym(48)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,25)(24,26), (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16)(25,27,29,31,33,35,37,39,41,43,45,47)(26,36,46,32,42,28,38,48,34,44,30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(3,7)(4,12)(5,17)(6,22)(9,13)(10,18)(11,23)(15,19)(16,24)(25,37)(26,42)(27,47)(29,33)(30,38)(31,43)(32,48)(35,39)(36,44)(41,45)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,25)(24,26), (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16)(25,27,29,31,33,35,37,39,41,43,45,47)(26,36,46,32,42,28,38,48,34,44,30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,21)(3,7)(4,12)(5,17)(6,22)(9,13)(10,18)(11,23)(15,19)(16,24)(25,37)(26,42)(27,47)(29,33)(30,38)(31,43)(32,48)(35,39)(36,44)(41,45) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,25),(24,26)], [(1,3,5,7,9,11,13,15,17,19,21,23),(2,12,22,8,18,4,14,24,10,20,6,16),(25,27,29,31,33,35,37,39,41,43,45,47),(26,36,46,32,42,28,38,48,34,44,30,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,21),(3,7),(4,12),(5,17),(6,22),(9,13),(10,18),(11,23),(15,19),(16,24),(25,37),(26,42),(27,47),(29,33),(30,38),(31,43),(32,48),(35,39),(36,44),(41,45)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 8A | ··· | 8H | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 18 | 18 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D6 | D6 | M4(2) | C4×S3 | C4×S3 | C8⋊S3 | S32 | C6.D6 | C2×S32 | C6.D6 | C12.31D6 |
kernel | C2×C12.31D6 | C12.31D6 | C6×C3⋊C8 | C2×C4×C3⋊S3 | C4×C3⋊S3 | C2×C3⋊Dic3 | C22×C3⋊S3 | C2×C3⋊C8 | C3⋊C8 | C2×C12 | C3×C6 | C12 | C2×C6 | C6 | C2×C4 | C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 16 | 1 | 1 | 1 | 1 | 4 |
Matrix representation of C2×C12.31D6 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 35 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 27 |
0 | 0 | 0 | 0 | 46 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,35,0,0,0,0,18,0,0,0,0,0,0,0,46,46,0,0,0,0,27,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,1] >;
C2×C12.31D6 in GAP, Magma, Sage, TeX
C_2\times C_{12}._{31}D_6
% in TeX
G:=Group("C2xC12.31D6");
// GroupNames label
G:=SmallGroup(288,468);
// by ID
G=gap.SmallGroup(288,468);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,253,64,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^12=d^2=1,c^6=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^5,d*c*d=c^5>;
// generators/relations