direct product, metabelian, supersoluble, monomial
Aliases: C2×D6.D6, C62.132C23, (C4×S3)⋊16D6, C6⋊2(C4○D12), C6.7(S3×C23), (C3×C6).7C24, (C2×C12).310D6, (S3×C12)⋊14C22, (S3×C6).21C23, D6.19(C22×S3), (C22×S3).71D6, C3⋊D12⋊19C22, D6⋊S3⋊19C22, (C6×C12).257C22, (C3×C12).150C23, C12.149(C22×S3), (C2×Dic3).106D6, C32⋊2Q8⋊17C22, C3⋊Dic3.38C23, Dic3.19(C22×S3), (C3×Dic3).20C23, (C6×Dic3).148C22, (S3×C2×C4)⋊15S3, (S3×C2×C12)⋊2C2, C4.96(C2×S32), (C2×C4).143S32, C3⋊2(C2×C4○D12), C32⋊3(C2×C4○D4), (C3×C6)⋊3(C4○D4), C22.62(C2×S32), C2.10(C22×S32), (C4×C3⋊S3)⋊18C22, (C2×C3⋊D12)⋊23C2, (C2×D6⋊S3)⋊18C2, (C2×C32⋊2Q8)⋊19C2, (C2×C3⋊S3).42C23, (S3×C2×C6).104C22, (C2×C6).149(C22×S3), (C22×C3⋊S3).101C22, (C2×C3⋊Dic3).179C22, (C2×C4×C3⋊S3)⋊24C2, SmallGroup(288,948)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — S3×C6 — D6⋊S3 — C2×D6⋊S3 — C2×D6.D6 |
Generators and relations for C2×D6.D6
G = < a,b,c,d,e | a2=b6=c2=1, d6=e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d5 >
Subgroups: 1234 in 355 conjugacy classes, 116 normal (14 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22×C4, C2×D4, C2×Q8, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C2×C4○D4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C4○D12, C2×C3⋊D4, C22×C12, D6⋊S3, C3⋊D12, C32⋊2Q8, S3×C12, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C22×C3⋊S3, C2×C4○D12, D6.D6, C2×D6⋊S3, C2×C3⋊D12, C2×C32⋊2Q8, S3×C2×C12, C2×C4×C3⋊S3, C2×D6.D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, S32, C4○D12, S3×C23, C2×S32, C2×C4○D12, D6.D6, C22×S32, C2×D6.D6
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 46)(26 47)(27 48)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 3 5 7 9 11)(2 4 6 8 10 12)(13 15 17 19 21 23)(14 16 18 20 22 24)(25 35 33 31 29 27)(26 36 34 32 30 28)(37 47 45 43 41 39)(38 48 46 44 42 40)
(1 33)(2 34)(3 35)(4 36)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27 7 33)(2 32 8 26)(3 25 9 31)(4 30 10 36)(5 35 11 29)(6 28 12 34)(13 48 19 42)(14 41 20 47)(15 46 21 40)(16 39 22 45)(17 44 23 38)(18 37 24 43)
G:=sub<Sym(48)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,3,5,7,9,11)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,7,33)(2,32,8,26)(3,25,9,31)(4,30,10,36)(5,35,11,29)(6,28,12,34)(13,48,19,42)(14,41,20,47)(15,46,21,40)(16,39,22,45)(17,44,23,38)(18,37,24,43)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,3,5,7,9,11)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,7,33)(2,32,8,26)(3,25,9,31)(4,30,10,36)(5,35,11,29)(6,28,12,34)(13,48,19,42)(14,41,20,47)(15,46,21,40)(16,39,22,45)(17,44,23,38)(18,37,24,43) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,46),(26,47),(27,48),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,3,5,7,9,11),(2,4,6,8,10,12),(13,15,17,19,21,23),(14,16,18,20,22,24),(25,35,33,31,29,27),(26,36,34,32,30,28),(37,47,45,43,41,39),(38,48,46,44,42,40)], [(1,33),(2,34),(3,35),(4,36),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27,7,33),(2,32,8,26),(3,25,9,31),(4,30,10,36),(5,35,11,29),(6,28,12,34),(13,48,19,42),(14,41,20,47),(15,46,21,40),(16,39,22,45),(17,44,23,38),(18,37,24,43)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6F | 6G | 6H | 6I | 6J | ··· | 6Q | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 12M | ··· | 12T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | C2×S32 | C2×S32 | D6.D6 |
kernel | C2×D6.D6 | D6.D6 | C2×D6⋊S3 | C2×C3⋊D12 | C2×C32⋊2Q8 | S3×C2×C12 | C2×C4×C3⋊S3 | S3×C2×C4 | C4×S3 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | C6 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 8 | 1 | 2 | 1 | 2 | 1 | 2 | 8 | 2 | 2 | 2 | 4 | 16 | 1 | 2 | 1 | 4 |
Matrix representation of C2×D6.D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,1,12],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
C2×D6.D6 in GAP, Magma, Sage, TeX
C_2\times D_6.D_6
% in TeX
G:=Group("C2xD6.D6");
// GroupNames label
G:=SmallGroup(288,948);
// by ID
G=gap.SmallGroup(288,948);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^6=c^2=1,d^6=e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^5>;
// generators/relations