extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×C3⋊S3)⋊1C2 = C24⋊4D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):1C2 | 288,445 |
(C8×C3⋊S3)⋊2C2 = D24⋊5S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):2C2 | 288,458 |
(C8×C3⋊S3)⋊3C2 = D8×C3⋊S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 72 | | (C8xC3:S3):3C2 | 288,767 |
(C8×C3⋊S3)⋊4C2 = C24.26D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3):4C2 | 288,769 |
(C8×C3⋊S3)⋊5C2 = C24.28D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3):5C2 | 288,776 |
(C8×C3⋊S3)⋊6C2 = C24⋊9D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):6C2 | 288,444 |
(C8×C3⋊S3)⋊7C2 = D12.2D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):7C2 | 288,457 |
(C8×C3⋊S3)⋊8C2 = SD16×C3⋊S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 72 | | (C8xC3:S3):8C2 | 288,770 |
(C8×C3⋊S3)⋊9C2 = C24.40D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3):9C2 | 288,773 |
(C8×C3⋊S3)⋊10C2 = S32×C8 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):10C2 | 288,437 |
(C8×C3⋊S3)⋊11C2 = C24.63D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):11C2 | 288,451 |
(C8×C3⋊S3)⋊12C2 = C24.95D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3):12C2 | 288,758 |
(C8×C3⋊S3)⋊13C2 = C24⋊D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):13C2 | 288,439 |
(C8×C3⋊S3)⋊14C2 = C24.D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3):14C2 | 288,453 |
(C8×C3⋊S3)⋊15C2 = M4(2)×C3⋊S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 72 | | (C8xC3:S3):15C2 | 288,763 |
(C8×C3⋊S3)⋊16C2 = C24.47D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3):16C2 | 288,764 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×C3⋊S3).1C2 = C24.23D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).1C2 | 288,450 |
(C8×C3⋊S3).2C2 = Q16×C3⋊S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3).2C2 | 288,774 |
(C8×C3⋊S3).3C2 = C24.60D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).3C2 | 288,190 |
(C8×C3⋊S3).4C2 = C24.62D6 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).4C2 | 288,192 |
(C8×C3⋊S3).5C2 = C48⋊S3 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 144 | | (C8xC3:S3).5C2 | 288,273 |
(C8×C3⋊S3).6C2 = C3⋊S3⋊3C16 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).6C2 | 288,412 |
(C8×C3⋊S3).7C2 = C32⋊3M5(2) | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).7C2 | 288,413 |
(C8×C3⋊S3).8C2 = C8×C32⋊C4 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).8C2 | 288,414 |
(C8×C3⋊S3).9C2 = (C3×C24)⋊C4 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).9C2 | 288,415 |
(C8×C3⋊S3).10C2 = C8⋊(C32⋊C4) | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).10C2 | 288,416 |
(C8×C3⋊S3).11C2 = C3⋊S3.4D8 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).11C2 | 288,417 |
(C8×C3⋊S3).12C2 = (C3×C24).C4 | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).12C2 | 288,418 |
(C8×C3⋊S3).13C2 = C8.(C32⋊C4) | φ: C2/C1 → C2 ⊆ Out C8×C3⋊S3 | 48 | 4 | (C8xC3:S3).13C2 | 288,419 |
(C8×C3⋊S3).14C2 = C16×C3⋊S3 | φ: trivial image | 144 | | (C8xC3:S3).14C2 | 288,272 |