Copied to
clipboard

G = C24.28D6order 288 = 25·32

28th non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C24.28D6, (C3×Q16)⋊3S3, C325D89C2, Q163(C3⋊S3), C6.127(S3×D4), (C3×Q8).40D6, C3223(C4○D8), C3⋊Dic3.71D4, (C32×Q16)⋊6C2, C34(D24⋊C2), C3211SD168C2, C12.26D65C2, (C3×C24).31C22, C12.96(C22×S3), (C3×C12).100C23, C12⋊S3.20C22, C324C8.29C22, (Q8×C32).20C22, (C8×C3⋊S3)⋊5C2, C8.10(C2×C3⋊S3), C2.24(D4×C3⋊S3), (C2×C3⋊S3).48D4, Q8.10(C2×C3⋊S3), (C3×C6).248(C2×D4), C4.10(C22×C3⋊S3), (C4×C3⋊S3).75C22, SmallGroup(288,776)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C24.28D6
C1C3C32C3×C6C3×C12C4×C3⋊S3C12.26D6 — C24.28D6
C32C3×C6C3×C12 — C24.28D6
C1C2C4Q16

Generators and relations for C24.28D6
 G = < a,b,c | a24=c2=1, b6=a12, bab-1=a7, cac=a-1, cbc=a12b5 >

Subgroups: 836 in 186 conjugacy classes, 55 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C8, D8, SD16, Q16, C4○D4, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, D12, C3×Q8, C4○D8, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C2×C3⋊S3, S3×C8, D24, Q82S3, C3×Q16, Q83S3, C324C8, C3×C24, C4×C3⋊S3, C4×C3⋊S3, C12⋊S3, C12⋊S3, Q8×C32, D24⋊C2, C8×C3⋊S3, C325D8, C3211SD16, C32×Q16, C12.26D6, C24.28D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C22×S3, C4○D8, C2×C3⋊S3, S3×D4, C22×C3⋊S3, D24⋊C2, D4×C3⋊S3, C24.28D6

Smallest permutation representation of C24.28D6
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 141 38 70 86 101 13 129 26 58 74 113)(2 124 39 53 87 108 14 136 27 65 75 120)(3 131 40 60 88 115 15 143 28 72 76 103)(4 138 41 67 89 98 16 126 29 55 77 110)(5 121 42 50 90 105 17 133 30 62 78 117)(6 128 43 57 91 112 18 140 31 69 79 100)(7 135 44 64 92 119 19 123 32 52 80 107)(8 142 45 71 93 102 20 130 33 59 81 114)(9 125 46 54 94 109 21 137 34 66 82 97)(10 132 47 61 95 116 22 144 35 49 83 104)(11 139 48 68 96 99 23 127 36 56 84 111)(12 122 25 51 73 106 24 134 37 63 85 118)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 41)(14 40)(15 39)(16 38)(17 37)(18 36)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(49 119)(50 118)(51 117)(52 116)(53 115)(54 114)(55 113)(56 112)(57 111)(58 110)(59 109)(60 108)(61 107)(62 106)(63 105)(64 104)(65 103)(66 102)(67 101)(68 100)(69 99)(70 98)(71 97)(72 120)(73 78)(74 77)(75 76)(79 96)(80 95)(81 94)(82 93)(83 92)(84 91)(85 90)(86 89)(87 88)(121 122)(123 144)(124 143)(125 142)(126 141)(127 140)(128 139)(129 138)(130 137)(131 136)(132 135)(133 134)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,141,38,70,86,101,13,129,26,58,74,113)(2,124,39,53,87,108,14,136,27,65,75,120)(3,131,40,60,88,115,15,143,28,72,76,103)(4,138,41,67,89,98,16,126,29,55,77,110)(5,121,42,50,90,105,17,133,30,62,78,117)(6,128,43,57,91,112,18,140,31,69,79,100)(7,135,44,64,92,119,19,123,32,52,80,107)(8,142,45,71,93,102,20,130,33,59,81,114)(9,125,46,54,94,109,21,137,34,66,82,97)(10,132,47,61,95,116,22,144,35,49,83,104)(11,139,48,68,96,99,23,127,36,56,84,111)(12,122,25,51,73,106,24,134,37,63,85,118), (1,29)(2,28)(3,27)(4,26)(5,25)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,104)(65,103)(66,102)(67,101)(68,100)(69,99)(70,98)(71,97)(72,120)(73,78)(74,77)(75,76)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(121,122)(123,144)(124,143)(125,142)(126,141)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,141,38,70,86,101,13,129,26,58,74,113)(2,124,39,53,87,108,14,136,27,65,75,120)(3,131,40,60,88,115,15,143,28,72,76,103)(4,138,41,67,89,98,16,126,29,55,77,110)(5,121,42,50,90,105,17,133,30,62,78,117)(6,128,43,57,91,112,18,140,31,69,79,100)(7,135,44,64,92,119,19,123,32,52,80,107)(8,142,45,71,93,102,20,130,33,59,81,114)(9,125,46,54,94,109,21,137,34,66,82,97)(10,132,47,61,95,116,22,144,35,49,83,104)(11,139,48,68,96,99,23,127,36,56,84,111)(12,122,25,51,73,106,24,134,37,63,85,118), (1,29)(2,28)(3,27)(4,26)(5,25)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,104)(65,103)(66,102)(67,101)(68,100)(69,99)(70,98)(71,97)(72,120)(73,78)(74,77)(75,76)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)(85,90)(86,89)(87,88)(121,122)(123,144)(124,143)(125,142)(126,141)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,141,38,70,86,101,13,129,26,58,74,113),(2,124,39,53,87,108,14,136,27,65,75,120),(3,131,40,60,88,115,15,143,28,72,76,103),(4,138,41,67,89,98,16,126,29,55,77,110),(5,121,42,50,90,105,17,133,30,62,78,117),(6,128,43,57,91,112,18,140,31,69,79,100),(7,135,44,64,92,119,19,123,32,52,80,107),(8,142,45,71,93,102,20,130,33,59,81,114),(9,125,46,54,94,109,21,137,34,66,82,97),(10,132,47,61,95,116,22,144,35,49,83,104),(11,139,48,68,96,99,23,127,36,56,84,111),(12,122,25,51,73,106,24,134,37,63,85,118)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,41),(14,40),(15,39),(16,38),(17,37),(18,36),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(49,119),(50,118),(51,117),(52,116),(53,115),(54,114),(55,113),(56,112),(57,111),(58,110),(59,109),(60,108),(61,107),(62,106),(63,105),(64,104),(65,103),(66,102),(67,101),(68,100),(69,99),(70,98),(71,97),(72,120),(73,78),(74,77),(75,76),(79,96),(80,95),(81,94),(82,93),(83,92),(84,91),(85,90),(86,89),(87,88),(121,122),(123,144),(124,143),(125,142),(126,141),(127,140),(128,139),(129,138),(130,137),(131,136),(132,135),(133,134)]])

42 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D8A8B8C8D12A12B12C12D12E···12L24A···24H
order12222333344444666688881212121212···1224···24
size11183636222224499222222181844448···84···4

42 irreducible representations

dim11111122222244
type+++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6C4○D8S3×D4D24⋊C2
kernelC24.28D6C8×C3⋊S3C325D8C3211SD16C32×Q16C12.26D6C3×Q16C3⋊Dic3C2×C3⋊S3C24C3×Q8C32C6C3
# reps11121241148448

Matrix representation of C24.28D6 in GL6(𝔽73)

010000
7210000
001000
000100
00001657
00001616
,
7200000
0720000
0007200
0017200
000066
0000667
,
0720000
7200000
001000
0017200
00005716
00001616

G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,57,16],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,6,6,0,0,0,0,6,67],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,57,16,0,0,0,0,16,16] >;

C24.28D6 in GAP, Magma, Sage, TeX

C_{24}._{28}D_6
% in TeX

G:=Group("C24.28D6");
// GroupNames label

G:=SmallGroup(288,776);
// by ID

G=gap.SmallGroup(288,776);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,422,135,100,346,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=c^2=1,b^6=a^12,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=a^12*b^5>;
// generators/relations

׿
×
𝔽