Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3:D4

Direct product G=NxQ with N=C3 and Q=Dic3:D4
dρLabelID
C3xDic3:D448C3xDic3:D4288,655

Semidirect products G=N:Q with N=C3 and Q=Dic3:D4
extensionφ:Q→Aut NdρLabelID
C3:1(Dic3:D4) = Dic3:3D12φ: Dic3:D4/Dic3:C4C2 ⊆ Aut C348C3:1(Dic3:D4)288,558
C3:2(Dic3:D4) = C62.82C23φ: Dic3:D4/D6:C4C2 ⊆ Aut C348C3:2(Dic3:D4)288,560
C3:3(Dic3:D4) = C62.228C23φ: Dic3:D4/C3xC22:C4C2 ⊆ Aut C3144C3:3(Dic3:D4)288,741
C3:4(Dic3:D4) = D6:D12φ: Dic3:D4/S3xC2xC4C2 ⊆ Aut C348C3:4(Dic3:D4)288,554
C3:5(Dic3:D4) = C62.55C23φ: Dic3:D4/C2xD12C2 ⊆ Aut C396C3:5(Dic3:D4)288,533
C3:6(Dic3:D4) = C62.100C23φ: Dic3:D4/C2xC3:D4C2 ⊆ Aut C348C3:6(Dic3:D4)288,606
C3:7(Dic3:D4) = C62.113C23φ: Dic3:D4/C2xC3:D4C2 ⊆ Aut C348C3:7(Dic3:D4)288,619

Non-split extensions G=N.Q with N=C3 and Q=Dic3:D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic3:D4) = D18:D4φ: Dic3:D4/C3xC22:C4C2 ⊆ Aut C3144C3.(Dic3:D4)288,94

׿
x
:
Z
F
o
wr
Q
<