Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3⋊D4

Direct product G=N×Q with N=C3 and Q=Dic3⋊D4
dρLabelID
C3×Dic3⋊D448C3xDic3:D4288,655

Semidirect products G=N:Q with N=C3 and Q=Dic3⋊D4
extensionφ:Q→Aut NdρLabelID
C31(Dic3⋊D4) = Dic33D12φ: Dic3⋊D4/Dic3⋊C4C2 ⊆ Aut C348C3:1(Dic3:D4)288,558
C32(Dic3⋊D4) = C62.82C23φ: Dic3⋊D4/D6⋊C4C2 ⊆ Aut C348C3:2(Dic3:D4)288,560
C33(Dic3⋊D4) = C62.228C23φ: Dic3⋊D4/C3×C22⋊C4C2 ⊆ Aut C3144C3:3(Dic3:D4)288,741
C34(Dic3⋊D4) = D6⋊D12φ: Dic3⋊D4/S3×C2×C4C2 ⊆ Aut C348C3:4(Dic3:D4)288,554
C35(Dic3⋊D4) = C62.55C23φ: Dic3⋊D4/C2×D12C2 ⊆ Aut C396C3:5(Dic3:D4)288,533
C36(Dic3⋊D4) = C62.100C23φ: Dic3⋊D4/C2×C3⋊D4C2 ⊆ Aut C348C3:6(Dic3:D4)288,606
C37(Dic3⋊D4) = C62.113C23φ: Dic3⋊D4/C2×C3⋊D4C2 ⊆ Aut C348C3:7(Dic3:D4)288,619

Non-split extensions G=N.Q with N=C3 and Q=Dic3⋊D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic3⋊D4) = D18⋊D4φ: Dic3⋊D4/C3×C22⋊C4C2 ⊆ Aut C3144C3.(Dic3:D4)288,94

׿
×
𝔽