Copied to
clipboard

G = S3×C50order 300 = 22·3·52

Direct product of C50 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C50, C6⋊C50, C1503C2, C754C22, C30.4C10, C3⋊(C2×C50), C5.(S3×C10), (C5×S3).C10, (S3×C10).C5, C15.(C2×C10), C10.3(C5×S3), SmallGroup(300,10)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C50
C1C3C15C75S3×C25 — S3×C50
C3 — S3×C50
C1C50

Generators and relations for S3×C50
 G = < a,b,c | a50=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C10
3C10
3C2×C10
3C50
3C50
3C2×C50

Smallest permutation representation of S3×C50
On 150 points
Generators in S150
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)
(1 97 135)(2 98 136)(3 99 137)(4 100 138)(5 51 139)(6 52 140)(7 53 141)(8 54 142)(9 55 143)(10 56 144)(11 57 145)(12 58 146)(13 59 147)(14 60 148)(15 61 149)(16 62 150)(17 63 101)(18 64 102)(19 65 103)(20 66 104)(21 67 105)(22 68 106)(23 69 107)(24 70 108)(25 71 109)(26 72 110)(27 73 111)(28 74 112)(29 75 113)(30 76 114)(31 77 115)(32 78 116)(33 79 117)(34 80 118)(35 81 119)(36 82 120)(37 83 121)(38 84 122)(39 85 123)(40 86 124)(41 87 125)(42 88 126)(43 89 127)(44 90 128)(45 91 129)(46 92 130)(47 93 131)(48 94 132)(49 95 133)(50 96 134)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 136)(74 137)(75 138)(76 139)(77 140)(78 141)(79 142)(80 143)(81 144)(82 145)(83 146)(84 147)(85 148)(86 149)(87 150)(88 101)(89 102)(90 103)(91 104)(92 105)(93 106)(94 107)(95 108)(96 109)(97 110)(98 111)(99 112)(100 113)

G:=sub<Sym(150)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,97,135)(2,98,136)(3,99,137)(4,100,138)(5,51,139)(6,52,140)(7,53,141)(8,54,142)(9,55,143)(10,56,144)(11,57,145)(12,58,146)(13,59,147)(14,60,148)(15,61,149)(16,62,150)(17,63,101)(18,64,102)(19,65,103)(20,66,104)(21,67,105)(22,68,106)(23,69,107)(24,70,108)(25,71,109)(26,72,110)(27,73,111)(28,74,112)(29,75,113)(30,76,114)(31,77,115)(32,78,116)(33,79,117)(34,80,118)(35,81,119)(36,82,120)(37,83,121)(38,84,122)(39,85,123)(40,86,124)(41,87,125)(42,88,126)(43,89,127)(44,90,128)(45,91,129)(46,92,130)(47,93,131)(48,94,132)(49,95,133)(50,96,134), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,97,135)(2,98,136)(3,99,137)(4,100,138)(5,51,139)(6,52,140)(7,53,141)(8,54,142)(9,55,143)(10,56,144)(11,57,145)(12,58,146)(13,59,147)(14,60,148)(15,61,149)(16,62,150)(17,63,101)(18,64,102)(19,65,103)(20,66,104)(21,67,105)(22,68,106)(23,69,107)(24,70,108)(25,71,109)(26,72,110)(27,73,111)(28,74,112)(29,75,113)(30,76,114)(31,77,115)(32,78,116)(33,79,117)(34,80,118)(35,81,119)(36,82,120)(37,83,121)(38,84,122)(39,85,123)(40,86,124)(41,87,125)(42,88,126)(43,89,127)(44,90,128)(45,91,129)(46,92,130)(47,93,131)(48,94,132)(49,95,133)(50,96,134), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)], [(1,97,135),(2,98,136),(3,99,137),(4,100,138),(5,51,139),(6,52,140),(7,53,141),(8,54,142),(9,55,143),(10,56,144),(11,57,145),(12,58,146),(13,59,147),(14,60,148),(15,61,149),(16,62,150),(17,63,101),(18,64,102),(19,65,103),(20,66,104),(21,67,105),(22,68,106),(23,69,107),(24,70,108),(25,71,109),(26,72,110),(27,73,111),(28,74,112),(29,75,113),(30,76,114),(31,77,115),(32,78,116),(33,79,117),(34,80,118),(35,81,119),(36,82,120),(37,83,121),(38,84,122),(39,85,123),(40,86,124),(41,87,125),(42,88,126),(43,89,127),(44,90,128),(45,91,129),(46,92,130),(47,93,131),(48,94,132),(49,95,133),(50,96,134)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,136),(74,137),(75,138),(76,139),(77,140),(78,141),(79,142),(80,143),(81,144),(82,145),(83,146),(84,147),(85,148),(86,149),(87,150),(88,101),(89,102),(90,103),(91,104),(92,105),(93,106),(94,107),(95,108),(96,109),(97,110),(98,111),(99,112),(100,113)]])

150 conjugacy classes

class 1 2A2B2C 3 5A5B5C5D 6 10A10B10C10D10E···10L15A15B15C15D25A···25T30A30B30C30D50A···50T50U···50BH75A···75T150A···150T
order12223555561010101010···101515151525···253030303050···5050···5075···75150···150
size113321111211113···322221···122221···13···32···22···2

150 irreducible representations

dim111111111222222
type+++++
imageC1C2C2C5C10C10C25C50C50S3D6C5×S3S3×C10S3×C25S3×C50
kernelS3×C50S3×C25C150S3×C10C5×S3C30D6S3C6C50C25C10C5C2C1
# reps12148420402011442020

Matrix representation of S3×C50 in GL2(𝔽151) generated by

790
079
,
0150
1150
,
0150
1500
G:=sub<GL(2,GF(151))| [79,0,0,79],[0,1,150,150],[0,150,150,0] >;

S3×C50 in GAP, Magma, Sage, TeX

S_3\times C_{50}
% in TeX

G:=Group("S3xC50");
// GroupNames label

G:=SmallGroup(300,10);
// by ID

G=gap.SmallGroup(300,10);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-3,87,5004]);
// Polycyclic

G:=Group<a,b,c|a^50=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C50 in TeX

׿
×
𝔽