Copied to
clipboard

?

G = C10×C4⋊D4order 320 = 26·5

Direct product of C10 and C4⋊D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C4⋊D4, C43(D4×C10), C2017(C2×D4), (C2×C20)⋊40D4, C234(C5×D4), (C23×C4)⋊5C10, C221(D4×C10), (C23×C20)⋊14C2, (C22×D4)⋊4C10, (C22×C10)⋊14D4, (D4×C10)⋊61C22, C24.12(C2×C10), (C2×C10).342C24, (C2×C20).655C23, (C22×C20)⋊65C22, C10.181(C22×D4), C22.16(C23×C10), C23.69(C22×C10), (C23×C10).12C22, (C22×C10).257C23, C2.5(D4×C2×C10), C4⋊C49(C2×C10), (D4×C2×C10)⋊19C2, (C2×C4)⋊10(C5×D4), (C10×C4⋊C4)⋊41C2, (C2×C4⋊C4)⋊14C10, (C2×D4)⋊9(C2×C10), (C2×C10)⋊10(C2×D4), C2.5(C10×C4○D4), (C5×C4⋊C4)⋊65C22, (C2×C22⋊C4)⋊9C10, C22⋊C411(C2×C10), (C10×C22⋊C4)⋊29C2, (C22×C4)⋊18(C2×C10), C10.224(C2×C4○D4), C22.29(C5×C4○D4), (C5×C22⋊C4)⋊65C22, (C2×C4).11(C22×C10), (C2×C10).229(C4○D4), SmallGroup(320,1524)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C4⋊D4
C1C2C22C2×C10C22×C10D4×C10C5×C4⋊D4 — C10×C4⋊D4
C1C22 — C10×C4⋊D4
C1C22×C10 — C10×C4⋊D4

Subgroups: 706 in 426 conjugacy classes, 194 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×6], C22, C22 [×10], C22 [×32], C5, C2×C4 [×12], C2×C4 [×14], D4 [×24], C23, C23 [×10], C23 [×16], C10 [×3], C10 [×4], C10 [×8], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×6], C22×C4 [×4], C2×D4 [×12], C2×D4 [×12], C24, C24 [×2], C20 [×4], C20 [×6], C2×C10, C2×C10 [×10], C2×C10 [×32], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4, C22×D4 [×2], C2×C20 [×12], C2×C20 [×14], C5×D4 [×24], C22×C10, C22×C10 [×10], C22×C10 [×16], C2×C4⋊D4, C5×C22⋊C4 [×8], C5×C4⋊C4 [×4], C22×C20 [×2], C22×C20 [×6], C22×C20 [×4], D4×C10 [×12], D4×C10 [×12], C23×C10, C23×C10 [×2], C10×C22⋊C4 [×2], C10×C4⋊C4, C5×C4⋊D4 [×8], C23×C20, D4×C2×C10, D4×C2×C10 [×2], C10×C4⋊D4

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×8], C23 [×15], C10 [×15], C2×D4 [×12], C4○D4 [×2], C24, C2×C10 [×35], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C5×D4 [×8], C22×C10 [×15], C2×C4⋊D4, D4×C10 [×12], C5×C4○D4 [×2], C23×C10, C5×C4⋊D4 [×4], D4×C2×C10 [×2], C10×C4○D4, C10×C4⋊D4

Generators and relations
 G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 119 56 147)(2 120 57 148)(3 111 58 149)(4 112 59 150)(5 113 60 141)(6 114 51 142)(7 115 52 143)(8 116 53 144)(9 117 54 145)(10 118 55 146)(11 78 34 106)(12 79 35 107)(13 80 36 108)(14 71 37 109)(15 72 38 110)(16 73 39 101)(17 74 40 102)(18 75 31 103)(19 76 32 104)(20 77 33 105)(21 82 153 100)(22 83 154 91)(23 84 155 92)(24 85 156 93)(25 86 157 94)(26 87 158 95)(27 88 159 96)(28 89 160 97)(29 90 151 98)(30 81 152 99)(41 126 65 134)(42 127 66 135)(43 128 67 136)(44 129 68 137)(45 130 69 138)(46 121 70 139)(47 122 61 140)(48 123 62 131)(49 124 63 132)(50 125 64 133)
(1 88 48 74)(2 89 49 75)(3 90 50 76)(4 81 41 77)(5 82 42 78)(6 83 43 79)(7 84 44 80)(8 85 45 71)(9 86 46 72)(10 87 47 73)(11 113 21 127)(12 114 22 128)(13 115 23 129)(14 116 24 130)(15 117 25 121)(16 118 26 122)(17 119 27 123)(18 120 28 124)(19 111 29 125)(20 112 30 126)(31 148 160 132)(32 149 151 133)(33 150 152 134)(34 141 153 135)(35 142 154 136)(36 143 155 137)(37 144 156 138)(38 145 157 139)(39 146 158 140)(40 147 159 131)(51 91 67 107)(52 92 68 108)(53 93 69 109)(54 94 70 110)(55 95 61 101)(56 96 62 102)(57 97 63 103)(58 98 64 104)(59 99 65 105)(60 100 66 106)
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 54)(42 55)(43 56)(44 57)(45 58)(46 59)(47 60)(48 51)(49 52)(50 53)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 101)(79 102)(80 103)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 91)(89 92)(90 93)(111 130)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(118 127)(119 128)(120 129)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 141)(151 156)(152 157)(153 158)(154 159)(155 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,119,56,147)(2,120,57,148)(3,111,58,149)(4,112,59,150)(5,113,60,141)(6,114,51,142)(7,115,52,143)(8,116,53,144)(9,117,54,145)(10,118,55,146)(11,78,34,106)(12,79,35,107)(13,80,36,108)(14,71,37,109)(15,72,38,110)(16,73,39,101)(17,74,40,102)(18,75,31,103)(19,76,32,104)(20,77,33,105)(21,82,153,100)(22,83,154,91)(23,84,155,92)(24,85,156,93)(25,86,157,94)(26,87,158,95)(27,88,159,96)(28,89,160,97)(29,90,151,98)(30,81,152,99)(41,126,65,134)(42,127,66,135)(43,128,67,136)(44,129,68,137)(45,130,69,138)(46,121,70,139)(47,122,61,140)(48,123,62,131)(49,124,63,132)(50,125,64,133), (1,88,48,74)(2,89,49,75)(3,90,50,76)(4,81,41,77)(5,82,42,78)(6,83,43,79)(7,84,44,80)(8,85,45,71)(9,86,46,72)(10,87,47,73)(11,113,21,127)(12,114,22,128)(13,115,23,129)(14,116,24,130)(15,117,25,121)(16,118,26,122)(17,119,27,123)(18,120,28,124)(19,111,29,125)(20,112,30,126)(31,148,160,132)(32,149,151,133)(33,150,152,134)(34,141,153,135)(35,142,154,136)(36,143,155,137)(37,144,156,138)(38,145,157,139)(39,146,158,140)(40,147,159,131)(51,91,67,107)(52,92,68,108)(53,93,69,109)(54,94,70,110)(55,95,61,101)(56,96,62,102)(57,97,63,103)(58,98,64,104)(59,99,65,105)(60,100,66,106), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,119,56,147)(2,120,57,148)(3,111,58,149)(4,112,59,150)(5,113,60,141)(6,114,51,142)(7,115,52,143)(8,116,53,144)(9,117,54,145)(10,118,55,146)(11,78,34,106)(12,79,35,107)(13,80,36,108)(14,71,37,109)(15,72,38,110)(16,73,39,101)(17,74,40,102)(18,75,31,103)(19,76,32,104)(20,77,33,105)(21,82,153,100)(22,83,154,91)(23,84,155,92)(24,85,156,93)(25,86,157,94)(26,87,158,95)(27,88,159,96)(28,89,160,97)(29,90,151,98)(30,81,152,99)(41,126,65,134)(42,127,66,135)(43,128,67,136)(44,129,68,137)(45,130,69,138)(46,121,70,139)(47,122,61,140)(48,123,62,131)(49,124,63,132)(50,125,64,133), (1,88,48,74)(2,89,49,75)(3,90,50,76)(4,81,41,77)(5,82,42,78)(6,83,43,79)(7,84,44,80)(8,85,45,71)(9,86,46,72)(10,87,47,73)(11,113,21,127)(12,114,22,128)(13,115,23,129)(14,116,24,130)(15,117,25,121)(16,118,26,122)(17,119,27,123)(18,120,28,124)(19,111,29,125)(20,112,30,126)(31,148,160,132)(32,149,151,133)(33,150,152,134)(34,141,153,135)(35,142,154,136)(36,143,155,137)(37,144,156,138)(38,145,157,139)(39,146,158,140)(40,147,159,131)(51,91,67,107)(52,92,68,108)(53,93,69,109)(54,94,70,110)(55,95,61,101)(56,96,62,102)(57,97,63,103)(58,98,64,104)(59,99,65,105)(60,100,66,106), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,119,56,147),(2,120,57,148),(3,111,58,149),(4,112,59,150),(5,113,60,141),(6,114,51,142),(7,115,52,143),(8,116,53,144),(9,117,54,145),(10,118,55,146),(11,78,34,106),(12,79,35,107),(13,80,36,108),(14,71,37,109),(15,72,38,110),(16,73,39,101),(17,74,40,102),(18,75,31,103),(19,76,32,104),(20,77,33,105),(21,82,153,100),(22,83,154,91),(23,84,155,92),(24,85,156,93),(25,86,157,94),(26,87,158,95),(27,88,159,96),(28,89,160,97),(29,90,151,98),(30,81,152,99),(41,126,65,134),(42,127,66,135),(43,128,67,136),(44,129,68,137),(45,130,69,138),(46,121,70,139),(47,122,61,140),(48,123,62,131),(49,124,63,132),(50,125,64,133)], [(1,88,48,74),(2,89,49,75),(3,90,50,76),(4,81,41,77),(5,82,42,78),(6,83,43,79),(7,84,44,80),(8,85,45,71),(9,86,46,72),(10,87,47,73),(11,113,21,127),(12,114,22,128),(13,115,23,129),(14,116,24,130),(15,117,25,121),(16,118,26,122),(17,119,27,123),(18,120,28,124),(19,111,29,125),(20,112,30,126),(31,148,160,132),(32,149,151,133),(33,150,152,134),(34,141,153,135),(35,142,154,136),(36,143,155,137),(37,144,156,138),(38,145,157,139),(39,146,158,140),(40,147,159,131),(51,91,67,107),(52,92,68,108),(53,93,69,109),(54,94,70,110),(55,95,61,101),(56,96,62,102),(57,97,63,103),(58,98,64,104),(59,99,65,105),(60,100,66,106)], [(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,54),(42,55),(43,56),(44,57),(45,58),(46,59),(47,60),(48,51),(49,52),(50,53),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,101),(79,102),(80,103),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,91),(89,92),(90,93),(111,130),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(118,127),(119,128),(120,129),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,141),(151,156),(152,157),(153,158),(154,159),(155,160)])

Matrix representation G ⊆ GL6(𝔽41)

2300000
0230000
0016000
0001600
0000310
0000031
,
090000
900000
0003200
0032000
00004039
000011
,
0400000
100000
0004000
001000
0000400
000011
,
4000000
010000
001000
0004000
000010
00004040

G:=sub<GL(6,GF(41))| [23,0,0,0,0,0,0,23,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,31,0,0,0,0,0,0,31],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,1,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40] >;

140 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I4J4K4L5A5B5C5D10A···10AB10AC···10AR10AS···10BH20A···20AF20AG···20AV
order12···2222222224···44444555510···1010···1010···1020···2020···20
size11···1222244442···2444411111···12···24···42···24···4

140 irreducible representations

dim111111111111222222
type++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC10×C4⋊D4C10×C22⋊C4C10×C4⋊C4C5×C4⋊D4C23×C20D4×C2×C10C2×C4⋊D4C2×C22⋊C4C2×C4⋊C4C4⋊D4C23×C4C22×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps12181348432412444161616

In GAP, Magma, Sage, TeX

C_{10}\times C_4\rtimes D_4
% in TeX

G:=Group("C10xC4:D4");
// GroupNames label

G:=SmallGroup(320,1524);
// by ID

G=gap.SmallGroup(320,1524);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽