Extensions 1→N→G→Q→1 with N=SD16 and Q=D10

Direct product G=N×Q with N=SD16 and Q=D10
dρLabelID
C2×D5×SD1680C2xD5xSD16320,1430

Semidirect products G=N:Q with N=SD16 and Q=D10
extensionφ:Q→Out NdρLabelID
SD161D10 = D5×C8⋊C22φ: D10/D5C2 ⊆ Out SD16408+SD16:1D10320,1444
SD162D10 = SD16⋊D10φ: D10/D5C2 ⊆ Out SD16808-SD16:2D10320,1445
SD163D10 = D85D10φ: D10/D5C2 ⊆ Out SD16808+SD16:3D10320,1446
SD164D10 = D86D10φ: D10/D5C2 ⊆ Out SD16808-SD16:4D10320,1447
SD165D10 = D5×C8.C22φ: D10/D5C2 ⊆ Out SD16808-SD16:5D10320,1448
SD166D10 = D40⋊C22φ: D10/D5C2 ⊆ Out SD16808+SD16:6D10320,1449
SD167D10 = C40.C23φ: D10/D5C2 ⊆ Out SD16808+SD16:7D10320,1450
SD168D10 = C2×D40⋊C2φ: D10/C10C2 ⊆ Out SD1680SD16:8D10320,1431
SD169D10 = C2×SD16⋊D5φ: D10/C10C2 ⊆ Out SD16160SD16:9D10320,1432
SD1610D10 = Q16⋊D10φ: D10/C10C2 ⊆ Out SD16804SD16:10D10320,1440
SD1611D10 = D815D10φ: D10/C10C2 ⊆ Out SD16804+SD16:11D10320,1441
SD1612D10 = C2×SD163D5φ: trivial image160SD16:12D10320,1433
SD1613D10 = D20.29D4φ: trivial image804SD16:13D10320,1434
SD1614D10 = D5×C4○D8φ: trivial image804SD16:14D10320,1439
SD1615D10 = D811D10φ: trivial image804SD16:15D10320,1442

Non-split extensions G=N.Q with N=SD16 and Q=D10
extensionφ:Q→Out NdρLabelID
SD16.1D10 = D20.44D4φ: D10/D5C2 ⊆ Out SD161608-SD16.1D10320,1451
SD16.2D10 = D20.47D4φ: D10/C10C2 ⊆ Out SD161604-SD16.2D10320,1443

׿
×
𝔽