Copied to
clipboard

G = D811D10order 320 = 26·5

5th semidirect product of D8 and D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D811D10, Q1610D10, D20.46D4, SD1615D10, C20.17C24, C40.43C23, Dic10.46D4, D20.12C23, Dic10.11C23, C4○D85D5, C4○D42D10, (C2×C8)⋊14D10, C5⋊D4.2D4, D8⋊D56C2, D4⋊D54C22, (D5×SD16)⋊6C2, C53(D4○SD16), C4.144(D4×D5), Q8⋊D53C22, D4⋊D108C2, D48D106C2, (Q8×D5)⋊2C22, C22.9(D4×D5), (C2×C40)⋊17C22, Q16⋊D56C2, D10.53(C2×D4), C20.350(C2×D4), (C8×D5)⋊10C22, (C5×D8)⋊16C22, C52C8.8C23, D4.D53C22, (D4×D5).2C22, C5⋊Q162C22, C4.17(C23×D5), C8.17(C22×D5), SD163D56C2, D4.9D107C2, D42D52C22, C40⋊C221C22, C8⋊D516C22, Dic5.59(C2×D4), (C5×Q16)⋊14C22, D4.11(C22×D5), (C5×D4).11C23, (C4×D5).10C23, D4.10D105C2, D20.3C410C2, (C5×Q8).11C23, Q8.11(C22×D5), (C2×C20).534C23, C4○D20.55C22, (C5×SD16)⋊16C22, C10.118(C22×D4), C4.Dic531C22, Q82D5.2C22, (C2×Dic10)⋊38C22, (C2×D20).187C22, C2.91(C2×D4×D5), (C5×C4○D8)⋊7C2, (C2×C40⋊C2)⋊27C2, (C2×C10).14(C2×D4), (C5×C4○D4)⋊4C22, (C2×C4).233(C22×D5), SmallGroup(320,1442)

Series: Derived Chief Lower central Upper central

C1C20 — D811D10
C1C5C10C20C4×D5C4○D20D48D10 — D811D10
C5C10C20 — D811D10
C1C2C2×C4C4○D8

Generators and relations for D811D10
 G = < a,b,c,d | a8=b2=c10=d2=1, bab=a-1, ac=ca, dad=a3, cbc-1=a4b, dbd=a6b, dcd=c-1 >

Subgroups: 1046 in 258 conjugacy classes, 99 normal (53 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, D8, SD16, SD16, Q16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C8○D4, C2×SD16, C4○D8, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C52C8, C40, Dic10, Dic10, Dic10, C4×D5, C4×D5, D20, D20, D20, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, D4○SD16, C8×D5, C8⋊D5, C40⋊C2, C4.Dic5, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C2×C40, C5×D8, C5×SD16, C5×Q16, C2×Dic10, C2×Dic10, C2×D20, C2×D20, C4○D20, C4○D20, D4×D5, D4×D5, D42D5, D42D5, Q8×D5, Q82D5, C5×C4○D4, D20.3C4, C2×C40⋊C2, D8⋊D5, D5×SD16, SD163D5, Q16⋊D5, D4⋊D10, D4.9D10, C5×C4○D8, D48D10, D4.10D10, D811D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, D4○SD16, D4×D5, C23×D5, C2×D4×D5, D811D10

Smallest permutation representation of D811D10
On 80 points
Generators in S80
(1 41 26 78 63 16 40 51)(2 42 27 79 64 17 31 52)(3 43 28 80 65 18 32 53)(4 44 29 71 66 19 33 54)(5 45 30 72 67 20 34 55)(6 46 21 73 68 11 35 56)(7 47 22 74 69 12 36 57)(8 48 23 75 70 13 37 58)(9 49 24 76 61 14 38 59)(10 50 25 77 62 15 39 60)
(1 51)(2 79)(3 53)(4 71)(5 55)(6 73)(7 57)(8 75)(9 59)(10 77)(11 35)(12 22)(13 37)(14 24)(15 39)(16 26)(17 31)(18 28)(19 33)(20 30)(21 46)(23 48)(25 50)(27 42)(29 44)(32 43)(34 45)(36 47)(38 49)(40 41)(52 64)(54 66)(56 68)(58 70)(60 62)(61 76)(63 78)(65 80)(67 72)(69 74)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 50)(12 49)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(31 66)(32 65)(33 64)(34 63)(35 62)(36 61)(37 70)(38 69)(39 68)(40 67)(51 55)(52 54)(56 60)(57 59)(71 79)(72 78)(73 77)(74 76)

G:=sub<Sym(80)| (1,41,26,78,63,16,40,51)(2,42,27,79,64,17,31,52)(3,43,28,80,65,18,32,53)(4,44,29,71,66,19,33,54)(5,45,30,72,67,20,34,55)(6,46,21,73,68,11,35,56)(7,47,22,74,69,12,36,57)(8,48,23,75,70,13,37,58)(9,49,24,76,61,14,38,59)(10,50,25,77,62,15,39,60), (1,51)(2,79)(3,53)(4,71)(5,55)(6,73)(7,57)(8,75)(9,59)(10,77)(11,35)(12,22)(13,37)(14,24)(15,39)(16,26)(17,31)(18,28)(19,33)(20,30)(21,46)(23,48)(25,50)(27,42)(29,44)(32,43)(34,45)(36,47)(38,49)(40,41)(52,64)(54,66)(56,68)(58,70)(60,62)(61,76)(63,78)(65,80)(67,72)(69,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,70)(38,69)(39,68)(40,67)(51,55)(52,54)(56,60)(57,59)(71,79)(72,78)(73,77)(74,76)>;

G:=Group( (1,41,26,78,63,16,40,51)(2,42,27,79,64,17,31,52)(3,43,28,80,65,18,32,53)(4,44,29,71,66,19,33,54)(5,45,30,72,67,20,34,55)(6,46,21,73,68,11,35,56)(7,47,22,74,69,12,36,57)(8,48,23,75,70,13,37,58)(9,49,24,76,61,14,38,59)(10,50,25,77,62,15,39,60), (1,51)(2,79)(3,53)(4,71)(5,55)(6,73)(7,57)(8,75)(9,59)(10,77)(11,35)(12,22)(13,37)(14,24)(15,39)(16,26)(17,31)(18,28)(19,33)(20,30)(21,46)(23,48)(25,50)(27,42)(29,44)(32,43)(34,45)(36,47)(38,49)(40,41)(52,64)(54,66)(56,68)(58,70)(60,62)(61,76)(63,78)(65,80)(67,72)(69,74), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,70)(38,69)(39,68)(40,67)(51,55)(52,54)(56,60)(57,59)(71,79)(72,78)(73,77)(74,76) );

G=PermutationGroup([[(1,41,26,78,63,16,40,51),(2,42,27,79,64,17,31,52),(3,43,28,80,65,18,32,53),(4,44,29,71,66,19,33,54),(5,45,30,72,67,20,34,55),(6,46,21,73,68,11,35,56),(7,47,22,74,69,12,36,57),(8,48,23,75,70,13,37,58),(9,49,24,76,61,14,38,59),(10,50,25,77,62,15,39,60)], [(1,51),(2,79),(3,53),(4,71),(5,55),(6,73),(7,57),(8,75),(9,59),(10,77),(11,35),(12,22),(13,37),(14,24),(15,39),(16,26),(17,31),(18,28),(19,33),(20,30),(21,46),(23,48),(25,50),(27,42),(29,44),(32,43),(34,45),(36,47),(38,49),(40,41),(52,64),(54,66),(56,68),(58,70),(60,62),(61,76),(63,78),(65,80),(67,72),(69,74)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,50),(12,49),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(31,66),(32,65),(33,64),(34,63),(35,62),(36,61),(37,70),(38,69),(39,68),(40,67),(51,55),(52,54),(56,60),(57,59),(71,79),(72,78),(73,77),(74,76)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H20I20J40A···40H
order12222222244444444558888810101010101010102020202020202020202040···40
size11244101020202244101020202222420202244888822224488884···4

50 irreducible representations

dim1111111111112222222224444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10D4○SD16D4×D5D4×D5D811D10
kernelD811D10D20.3C4C2×C40⋊C2D8⋊D5D5×SD16SD163D5Q16⋊D5D4⋊D10D4.9D10C5×C4○D8D48D10D4.10D10Dic10D20C5⋊D4C4○D8C2×C8D8SD16Q16C4○D4C5C4C22C1
# reps1112222111111122224242228

Matrix representation of D811D10 in GL4(𝔽41) generated by

004029
00121
2243917
1739242
,
3917112
2422940
3917224
2421739
,
14272714
14302711
28132714
28192711
,
1700
04000
2144034
03901
G:=sub<GL(4,GF(41))| [0,0,2,17,0,0,24,39,40,12,39,24,29,1,17,2],[39,24,39,24,17,2,17,2,1,29,2,17,12,40,24,39],[14,14,28,28,27,30,13,19,27,27,27,27,14,11,14,11],[1,0,2,0,7,40,14,39,0,0,40,0,0,0,34,1] >;

D811D10 in GAP, Magma, Sage, TeX

D_8\rtimes_{11}D_{10}
% in TeX

G:=Group("D8:11D10");
// GroupNames label

G:=SmallGroup(320,1442);
// by ID

G=gap.SmallGroup(320,1442);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,387,570,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^3,c*b*c^-1=a^4*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽