Copied to
clipboard

G = C2×SD163D5order 320 = 26·5

Direct product of C2 and SD163D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×SD163D5, C20.8C24, SD1612D10, C40.44C23, D20.4C23, Dic10.4C23, C4.45(D4×D5), C103(C4○D8), (C4×D5).68D4, C20.83(C2×D4), C4.8(C23×D5), D4⋊D511C22, (C2×SD16)⋊16D5, D10.22(C2×D4), (C2×C8).265D10, (C8×D5)⋊18C22, (C5×D4).6C23, C5⋊Q167C22, D4.6(C22×D5), C8.41(C22×D5), (C10×SD16)⋊11C2, (C2×D4).184D10, (C5×Q8).2C23, Q8.2(C22×D5), D42D57C22, C40⋊C218C22, C52C8.21C23, (C2×Q8).151D10, Q82D56C22, (C4×D5).62C23, (C22×D5).93D4, C22.141(D4×D5), (C2×C20).525C23, (C2×C40).166C22, Dic5.124(C2×D4), (C2×Dic5).284D4, (C5×SD16)⋊13C22, C10.109(C22×D4), (C2×D20).184C22, (D4×C10).166C22, (Q8×C10).148C22, (C2×Dic10).203C22, C53(C2×C4○D8), (D5×C2×C8)⋊10C2, C2.82(C2×D4×D5), (C2×D4⋊D5)⋊28C2, (C2×C40⋊C2)⋊32C2, (C2×C5⋊Q16)⋊26C2, (C2×D42D5)⋊25C2, (C2×Q82D5)⋊15C2, (C2×C10).398(C2×D4), (C2×C4×D5).328C22, (C2×C4).614(C22×D5), (C2×C52C8).292C22, SmallGroup(320,1433)

Series: Derived Chief Lower central Upper central

C1C20 — C2×SD163D5
C1C5C10C20C4×D5C2×C4×D5C2×D42D5 — C2×SD163D5
C5C10C20 — C2×SD163D5
C1C22C2×C4C2×SD16

Generators and relations for C2×SD163D5
 G = < a,b,c,d,e | a2=b8=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b3, bd=db, be=eb, cd=dc, ece=b4c, ede=d-1 >

Subgroups: 990 in 266 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C10, C2×C8, C2×C8, D8, SD16, SD16, Q16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C22×C8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C52C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×D5, C22×D5, C22×C10, C2×C4○D8, C8×D5, C40⋊C2, C2×C52C8, D4⋊D5, C5⋊Q16, C2×C40, C5×SD16, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, D42D5, D42D5, Q82D5, Q82D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, D5×C2×C8, C2×C40⋊C2, SD163D5, C2×D4⋊D5, C2×C5⋊Q16, C10×SD16, C2×D42D5, C2×Q82D5, C2×SD163D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C4○D8, C22×D4, C22×D5, C2×C4○D8, D4×D5, C23×D5, SD163D5, C2×D4×D5, C2×SD163D5

Smallest permutation representation of C2×SD163D5
On 160 points
Generators in S160
(1 96)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 109)(10 110)(11 111)(12 112)(13 105)(14 106)(15 107)(16 108)(17 157)(18 158)(19 159)(20 160)(21 153)(22 154)(23 155)(24 156)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 145)(32 146)(33 144)(34 137)(35 138)(36 139)(37 140)(38 141)(39 142)(40 143)(41 88)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 101)(50 102)(51 103)(52 104)(53 97)(54 98)(55 99)(56 100)(57 122)(58 123)(59 124)(60 125)(61 126)(62 127)(63 128)(64 121)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 113)(72 114)(73 133)(74 134)(75 135)(76 136)(77 129)(78 130)(79 131)(80 132)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 66)(2 69)(3 72)(4 67)(5 70)(6 65)(7 68)(8 71)(9 31)(10 26)(11 29)(12 32)(13 27)(14 30)(15 25)(16 28)(17 139)(18 142)(19 137)(20 140)(21 143)(22 138)(23 141)(24 144)(33 156)(34 159)(35 154)(36 157)(37 160)(38 155)(39 158)(40 153)(41 60)(42 63)(43 58)(44 61)(45 64)(46 59)(47 62)(48 57)(49 77)(50 80)(51 75)(52 78)(53 73)(54 76)(55 79)(56 74)(81 128)(82 123)(83 126)(84 121)(85 124)(86 127)(87 122)(88 125)(89 119)(90 114)(91 117)(92 120)(93 115)(94 118)(95 113)(96 116)(97 133)(98 136)(99 131)(100 134)(101 129)(102 132)(103 135)(104 130)(105 149)(106 152)(107 147)(108 150)(109 145)(110 148)(111 151)(112 146)
(1 106 35 127 135)(2 107 36 128 136)(3 108 37 121 129)(4 109 38 122 130)(5 110 39 123 131)(6 111 40 124 132)(7 112 33 125 133)(8 105 34 126 134)(9 141 57 78 91)(10 142 58 79 92)(11 143 59 80 93)(12 144 60 73 94)(13 137 61 74 95)(14 138 62 75 96)(15 139 63 76 89)(16 140 64 77 90)(17 42 54 119 25)(18 43 55 120 26)(19 44 56 113 27)(20 45 49 114 28)(21 46 50 115 29)(22 47 51 116 30)(23 48 52 117 31)(24 41 53 118 32)(65 151 153 85 102)(66 152 154 86 103)(67 145 155 87 104)(68 146 156 88 97)(69 147 157 81 98)(70 148 158 82 99)(71 149 159 83 100)(72 150 160 84 101)
(1 102)(2 103)(3 104)(4 97)(5 98)(6 99)(7 100)(8 101)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 142)(18 143)(19 144)(20 137)(21 138)(22 139)(23 140)(24 141)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(33 159)(34 160)(35 153)(36 154)(37 155)(38 156)(39 157)(40 158)(49 95)(50 96)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(65 135)(66 136)(67 129)(68 130)(69 131)(70 132)(71 133)(72 134)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 110)(82 111)(83 112)(84 105)(85 106)(86 107)(87 108)(88 109)(121 145)(122 146)(123 147)(124 148)(125 149)(126 150)(127 151)(128 152)

G:=sub<Sym(160)| (1,96)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,109)(10,110)(11,111)(12,112)(13,105)(14,106)(15,107)(16,108)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(33,144)(34,137)(35,138)(36,139)(37,140)(38,141)(39,142)(40,143)(41,88)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,101)(50,102)(51,103)(52,104)(53,97)(54,98)(55,99)(56,100)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,121)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,133)(74,134)(75,135)(76,136)(77,129)(78,130)(79,131)(80,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,66)(2,69)(3,72)(4,67)(5,70)(6,65)(7,68)(8,71)(9,31)(10,26)(11,29)(12,32)(13,27)(14,30)(15,25)(16,28)(17,139)(18,142)(19,137)(20,140)(21,143)(22,138)(23,141)(24,144)(33,156)(34,159)(35,154)(36,157)(37,160)(38,155)(39,158)(40,153)(41,60)(42,63)(43,58)(44,61)(45,64)(46,59)(47,62)(48,57)(49,77)(50,80)(51,75)(52,78)(53,73)(54,76)(55,79)(56,74)(81,128)(82,123)(83,126)(84,121)(85,124)(86,127)(87,122)(88,125)(89,119)(90,114)(91,117)(92,120)(93,115)(94,118)(95,113)(96,116)(97,133)(98,136)(99,131)(100,134)(101,129)(102,132)(103,135)(104,130)(105,149)(106,152)(107,147)(108,150)(109,145)(110,148)(111,151)(112,146), (1,106,35,127,135)(2,107,36,128,136)(3,108,37,121,129)(4,109,38,122,130)(5,110,39,123,131)(6,111,40,124,132)(7,112,33,125,133)(8,105,34,126,134)(9,141,57,78,91)(10,142,58,79,92)(11,143,59,80,93)(12,144,60,73,94)(13,137,61,74,95)(14,138,62,75,96)(15,139,63,76,89)(16,140,64,77,90)(17,42,54,119,25)(18,43,55,120,26)(19,44,56,113,27)(20,45,49,114,28)(21,46,50,115,29)(22,47,51,116,30)(23,48,52,117,31)(24,41,53,118,32)(65,151,153,85,102)(66,152,154,86,103)(67,145,155,87,104)(68,146,156,88,97)(69,147,157,81,98)(70,148,158,82,99)(71,149,159,83,100)(72,150,160,84,101), (1,102)(2,103)(3,104)(4,97)(5,98)(6,99)(7,100)(8,101)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,142)(18,143)(19,144)(20,137)(21,138)(22,139)(23,140)(24,141)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,159)(34,160)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(49,95)(50,96)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(65,135)(66,136)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,151)(128,152)>;

G:=Group( (1,96)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,109)(10,110)(11,111)(12,112)(13,105)(14,106)(15,107)(16,108)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(33,144)(34,137)(35,138)(36,139)(37,140)(38,141)(39,142)(40,143)(41,88)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,101)(50,102)(51,103)(52,104)(53,97)(54,98)(55,99)(56,100)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,121)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,133)(74,134)(75,135)(76,136)(77,129)(78,130)(79,131)(80,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,66)(2,69)(3,72)(4,67)(5,70)(6,65)(7,68)(8,71)(9,31)(10,26)(11,29)(12,32)(13,27)(14,30)(15,25)(16,28)(17,139)(18,142)(19,137)(20,140)(21,143)(22,138)(23,141)(24,144)(33,156)(34,159)(35,154)(36,157)(37,160)(38,155)(39,158)(40,153)(41,60)(42,63)(43,58)(44,61)(45,64)(46,59)(47,62)(48,57)(49,77)(50,80)(51,75)(52,78)(53,73)(54,76)(55,79)(56,74)(81,128)(82,123)(83,126)(84,121)(85,124)(86,127)(87,122)(88,125)(89,119)(90,114)(91,117)(92,120)(93,115)(94,118)(95,113)(96,116)(97,133)(98,136)(99,131)(100,134)(101,129)(102,132)(103,135)(104,130)(105,149)(106,152)(107,147)(108,150)(109,145)(110,148)(111,151)(112,146), (1,106,35,127,135)(2,107,36,128,136)(3,108,37,121,129)(4,109,38,122,130)(5,110,39,123,131)(6,111,40,124,132)(7,112,33,125,133)(8,105,34,126,134)(9,141,57,78,91)(10,142,58,79,92)(11,143,59,80,93)(12,144,60,73,94)(13,137,61,74,95)(14,138,62,75,96)(15,139,63,76,89)(16,140,64,77,90)(17,42,54,119,25)(18,43,55,120,26)(19,44,56,113,27)(20,45,49,114,28)(21,46,50,115,29)(22,47,51,116,30)(23,48,52,117,31)(24,41,53,118,32)(65,151,153,85,102)(66,152,154,86,103)(67,145,155,87,104)(68,146,156,88,97)(69,147,157,81,98)(70,148,158,82,99)(71,149,159,83,100)(72,150,160,84,101), (1,102)(2,103)(3,104)(4,97)(5,98)(6,99)(7,100)(8,101)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,142)(18,143)(19,144)(20,137)(21,138)(22,139)(23,140)(24,141)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,159)(34,160)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(49,95)(50,96)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(65,135)(66,136)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,151)(128,152) );

G=PermutationGroup([[(1,96),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,109),(10,110),(11,111),(12,112),(13,105),(14,106),(15,107),(16,108),(17,157),(18,158),(19,159),(20,160),(21,153),(22,154),(23,155),(24,156),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,145),(32,146),(33,144),(34,137),(35,138),(36,139),(37,140),(38,141),(39,142),(40,143),(41,88),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,101),(50,102),(51,103),(52,104),(53,97),(54,98),(55,99),(56,100),(57,122),(58,123),(59,124),(60,125),(61,126),(62,127),(63,128),(64,121),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,113),(72,114),(73,133),(74,134),(75,135),(76,136),(77,129),(78,130),(79,131),(80,132)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,66),(2,69),(3,72),(4,67),(5,70),(6,65),(7,68),(8,71),(9,31),(10,26),(11,29),(12,32),(13,27),(14,30),(15,25),(16,28),(17,139),(18,142),(19,137),(20,140),(21,143),(22,138),(23,141),(24,144),(33,156),(34,159),(35,154),(36,157),(37,160),(38,155),(39,158),(40,153),(41,60),(42,63),(43,58),(44,61),(45,64),(46,59),(47,62),(48,57),(49,77),(50,80),(51,75),(52,78),(53,73),(54,76),(55,79),(56,74),(81,128),(82,123),(83,126),(84,121),(85,124),(86,127),(87,122),(88,125),(89,119),(90,114),(91,117),(92,120),(93,115),(94,118),(95,113),(96,116),(97,133),(98,136),(99,131),(100,134),(101,129),(102,132),(103,135),(104,130),(105,149),(106,152),(107,147),(108,150),(109,145),(110,148),(111,151),(112,146)], [(1,106,35,127,135),(2,107,36,128,136),(3,108,37,121,129),(4,109,38,122,130),(5,110,39,123,131),(6,111,40,124,132),(7,112,33,125,133),(8,105,34,126,134),(9,141,57,78,91),(10,142,58,79,92),(11,143,59,80,93),(12,144,60,73,94),(13,137,61,74,95),(14,138,62,75,96),(15,139,63,76,89),(16,140,64,77,90),(17,42,54,119,25),(18,43,55,120,26),(19,44,56,113,27),(20,45,49,114,28),(21,46,50,115,29),(22,47,51,116,30),(23,48,52,117,31),(24,41,53,118,32),(65,151,153,85,102),(66,152,154,86,103),(67,145,155,87,104),(68,146,156,88,97),(69,147,157,81,98),(70,148,158,82,99),(71,149,159,83,100),(72,150,160,84,101)], [(1,102),(2,103),(3,104),(4,97),(5,98),(6,99),(7,100),(8,101),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,142),(18,143),(19,144),(20,137),(21,138),(22,139),(23,140),(24,141),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(33,159),(34,160),(35,153),(36,154),(37,155),(38,156),(39,157),(40,158),(49,95),(50,96),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(65,135),(66,136),(67,129),(68,130),(69,131),(70,132),(71,133),(72,134),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,110),(82,111),(83,112),(84,105),(85,106),(86,107),(87,108),(88,109),(121,145),(122,146),(123,147),(124,148),(125,149),(126,150),(127,151),(128,152)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222224444444444558888888810···1010101010202020202020202040···40
size11114410102020224455552020222222101010102···28888444488884···4

56 irreducible representations

dim111111111222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10C4○D8D4×D5D4×D5SD163D5
kernelC2×SD163D5D5×C2×C8C2×C40⋊C2SD163D5C2×D4⋊D5C2×C5⋊Q16C10×SD16C2×D42D5C2×Q82D5C4×D5C2×Dic5C22×D5C2×SD16C2×C8SD16C2×D4C2×Q8C10C4C22C2
# reps111811111211228228228

Matrix representation of C2×SD163D5 in GL5(𝔽41)

400000
01000
00100
00010
00001
,
10000
001100
0151100
00010
00001
,
10000
001700
029000
00010
00001
,
10000
01000
00100
000040
000134
,
400000
092300
093200
000740
000734

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,15,0,0,0,11,11,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,29,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,40,34],[40,0,0,0,0,0,9,9,0,0,0,23,32,0,0,0,0,0,7,7,0,0,0,40,34] >;

C2×SD163D5 in GAP, Magma, Sage, TeX

C_2\times {\rm SD}_{16}\rtimes_3D_5
% in TeX

G:=Group("C2xSD16:3D5");
// GroupNames label

G:=SmallGroup(320,1433);
// by ID

G=gap.SmallGroup(320,1433);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^3,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽