metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20.47D4, D8.10D10, C40.39C23, C20.18C24, Q16.12D10, SD16.2D10, Dic10.47D4, Dic10.12C23, Dic20.16C22, C4○D8⋊6D5, C5⋊3(Q8○D8), (D5×Q16)⋊7C2, C5⋊D4.3D4, D8⋊3D5⋊7C2, C4.145(D4×D5), D4.D5.C22, C4○D4.13D10, D10.54(C2×D4), (C2×C8).106D10, SD16⋊D5⋊6C2, C20.351(C2×D4), C5⋊2C8.9C23, (C8×D5).8C22, C4.18(C23×D5), C22.10(D4×D5), C8.18(C22×D5), (C2×Dic20)⋊23C2, D4.9D10⋊8C2, D20.3C4⋊8C2, (Q8×D5).2C22, Dic5.60(C2×D4), (C5×D4).12C23, D4.12(C22×D5), (C4×D5).11C23, (C5×D8).10C22, C8⋊D5.2C22, D4.10D10⋊6C2, Q8.12(C22×D5), (C5×Q8).12C23, C5⋊Q16.2C22, (C2×C20).535C23, (C2×C40).106C22, C4○D20.56C22, D4⋊2D5.2C22, C10.119(C22×D4), (C5×Q16).12C22, (C5×SD16).2C22, C4.Dic5.49C22, (C2×Dic10).206C22, C2.92(C2×D4×D5), (C5×C4○D8)⋊6C2, (C2×C10).15(C2×D4), (C5×C4○D4).23C22, (C2×C4).234(C22×D5), SmallGroup(320,1443)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20.47D4
G = < a,b,c,d | a8=b2=c10=1, d2=a4, bab=a-1, ac=ca, ad=da, cbc-1=a4b, bd=db, dcd-1=a4c-1 >
Subgroups: 854 in 248 conjugacy classes, 99 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, SD16, SD16, Q16, Q16, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C8○D4, C2×Q16, C4○D8, C4○D8, C8.C22, 2- 1+4, C5⋊2C8, C40, Dic10, Dic10, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, Q8○D8, C8×D5, C8⋊D5, Dic20, C4.Dic5, D4.D5, C5⋊Q16, C2×C40, C5×D8, C5×SD16, C5×Q16, C2×Dic10, C2×Dic10, C4○D20, C4○D20, D4⋊2D5, D4⋊2D5, Q8×D5, C5×C4○D4, D20.3C4, C2×Dic20, D8⋊3D5, SD16⋊D5, D5×Q16, D4.9D10, C5×C4○D8, D4.10D10, D20.47D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, Q8○D8, D4×D5, C23×D5, C2×D4×D5, D20.47D4
(1 17 22 153 123 86 60 95)(2 18 23 154 124 87 51 96)(3 19 24 155 125 88 52 97)(4 20 25 156 126 89 53 98)(5 11 26 157 127 90 54 99)(6 12 27 158 128 81 55 100)(7 13 28 159 129 82 56 91)(8 14 29 160 130 83 57 92)(9 15 30 151 121 84 58 93)(10 16 21 152 122 85 59 94)(31 142 104 41 69 114 132 79)(32 143 105 42 70 115 133 80)(33 144 106 43 61 116 134 71)(34 145 107 44 62 117 135 72)(35 146 108 45 63 118 136 73)(36 147 109 46 64 119 137 74)(37 148 110 47 65 120 138 75)(38 149 101 48 66 111 139 76)(39 150 102 49 67 112 140 77)(40 141 103 50 68 113 131 78)
(1 148)(2 111)(3 150)(4 113)(5 142)(6 115)(7 144)(8 117)(9 146)(10 119)(11 31)(12 70)(13 33)(14 62)(15 35)(16 64)(17 37)(18 66)(19 39)(20 68)(21 46)(22 75)(23 48)(24 77)(25 50)(26 79)(27 42)(28 71)(29 44)(30 73)(32 81)(34 83)(36 85)(38 87)(40 89)(41 54)(43 56)(45 58)(47 60)(49 52)(51 76)(53 78)(55 80)(57 72)(59 74)(61 82)(63 84)(65 86)(67 88)(69 90)(91 106)(92 135)(93 108)(94 137)(95 110)(96 139)(97 102)(98 131)(99 104)(100 133)(101 154)(103 156)(105 158)(107 160)(109 152)(112 125)(114 127)(116 129)(118 121)(120 123)(122 147)(124 149)(126 141)(128 143)(130 145)(132 157)(134 159)(136 151)(138 153)(140 155)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 123 122)(2 121 124 9)(3 8 125 130)(4 129 126 7)(5 6 127 128)(11 12 90 81)(13 20 82 89)(14 88 83 19)(15 18 84 87)(16 86 85 17)(21 60 59 22)(23 58 51 30)(24 29 52 57)(25 56 53 28)(26 27 54 55)(31 70 69 32)(33 68 61 40)(34 39 62 67)(35 66 63 38)(36 37 64 65)(41 80 79 42)(43 78 71 50)(44 49 72 77)(45 76 73 48)(46 47 74 75)(91 98 159 156)(92 155 160 97)(93 96 151 154)(94 153 152 95)(99 100 157 158)(101 108 139 136)(102 135 140 107)(103 106 131 134)(104 133 132 105)(109 110 137 138)(111 118 149 146)(112 145 150 117)(113 116 141 144)(114 143 142 115)(119 120 147 148)
G:=sub<Sym(160)| (1,17,22,153,123,86,60,95)(2,18,23,154,124,87,51,96)(3,19,24,155,125,88,52,97)(4,20,25,156,126,89,53,98)(5,11,26,157,127,90,54,99)(6,12,27,158,128,81,55,100)(7,13,28,159,129,82,56,91)(8,14,29,160,130,83,57,92)(9,15,30,151,121,84,58,93)(10,16,21,152,122,85,59,94)(31,142,104,41,69,114,132,79)(32,143,105,42,70,115,133,80)(33,144,106,43,61,116,134,71)(34,145,107,44,62,117,135,72)(35,146,108,45,63,118,136,73)(36,147,109,46,64,119,137,74)(37,148,110,47,65,120,138,75)(38,149,101,48,66,111,139,76)(39,150,102,49,67,112,140,77)(40,141,103,50,68,113,131,78), (1,148)(2,111)(3,150)(4,113)(5,142)(6,115)(7,144)(8,117)(9,146)(10,119)(11,31)(12,70)(13,33)(14,62)(15,35)(16,64)(17,37)(18,66)(19,39)(20,68)(21,46)(22,75)(23,48)(24,77)(25,50)(26,79)(27,42)(28,71)(29,44)(30,73)(32,81)(34,83)(36,85)(38,87)(40,89)(41,54)(43,56)(45,58)(47,60)(49,52)(51,76)(53,78)(55,80)(57,72)(59,74)(61,82)(63,84)(65,86)(67,88)(69,90)(91,106)(92,135)(93,108)(94,137)(95,110)(96,139)(97,102)(98,131)(99,104)(100,133)(101,154)(103,156)(105,158)(107,160)(109,152)(112,125)(114,127)(116,129)(118,121)(120,123)(122,147)(124,149)(126,141)(128,143)(130,145)(132,157)(134,159)(136,151)(138,153)(140,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,12,90,81)(13,20,82,89)(14,88,83,19)(15,18,84,87)(16,86,85,17)(21,60,59,22)(23,58,51,30)(24,29,52,57)(25,56,53,28)(26,27,54,55)(31,70,69,32)(33,68,61,40)(34,39,62,67)(35,66,63,38)(36,37,64,65)(41,80,79,42)(43,78,71,50)(44,49,72,77)(45,76,73,48)(46,47,74,75)(91,98,159,156)(92,155,160,97)(93,96,151,154)(94,153,152,95)(99,100,157,158)(101,108,139,136)(102,135,140,107)(103,106,131,134)(104,133,132,105)(109,110,137,138)(111,118,149,146)(112,145,150,117)(113,116,141,144)(114,143,142,115)(119,120,147,148)>;
G:=Group( (1,17,22,153,123,86,60,95)(2,18,23,154,124,87,51,96)(3,19,24,155,125,88,52,97)(4,20,25,156,126,89,53,98)(5,11,26,157,127,90,54,99)(6,12,27,158,128,81,55,100)(7,13,28,159,129,82,56,91)(8,14,29,160,130,83,57,92)(9,15,30,151,121,84,58,93)(10,16,21,152,122,85,59,94)(31,142,104,41,69,114,132,79)(32,143,105,42,70,115,133,80)(33,144,106,43,61,116,134,71)(34,145,107,44,62,117,135,72)(35,146,108,45,63,118,136,73)(36,147,109,46,64,119,137,74)(37,148,110,47,65,120,138,75)(38,149,101,48,66,111,139,76)(39,150,102,49,67,112,140,77)(40,141,103,50,68,113,131,78), (1,148)(2,111)(3,150)(4,113)(5,142)(6,115)(7,144)(8,117)(9,146)(10,119)(11,31)(12,70)(13,33)(14,62)(15,35)(16,64)(17,37)(18,66)(19,39)(20,68)(21,46)(22,75)(23,48)(24,77)(25,50)(26,79)(27,42)(28,71)(29,44)(30,73)(32,81)(34,83)(36,85)(38,87)(40,89)(41,54)(43,56)(45,58)(47,60)(49,52)(51,76)(53,78)(55,80)(57,72)(59,74)(61,82)(63,84)(65,86)(67,88)(69,90)(91,106)(92,135)(93,108)(94,137)(95,110)(96,139)(97,102)(98,131)(99,104)(100,133)(101,154)(103,156)(105,158)(107,160)(109,152)(112,125)(114,127)(116,129)(118,121)(120,123)(122,147)(124,149)(126,141)(128,143)(130,145)(132,157)(134,159)(136,151)(138,153)(140,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,12,90,81)(13,20,82,89)(14,88,83,19)(15,18,84,87)(16,86,85,17)(21,60,59,22)(23,58,51,30)(24,29,52,57)(25,56,53,28)(26,27,54,55)(31,70,69,32)(33,68,61,40)(34,39,62,67)(35,66,63,38)(36,37,64,65)(41,80,79,42)(43,78,71,50)(44,49,72,77)(45,76,73,48)(46,47,74,75)(91,98,159,156)(92,155,160,97)(93,96,151,154)(94,153,152,95)(99,100,157,158)(101,108,139,136)(102,135,140,107)(103,106,131,134)(104,133,132,105)(109,110,137,138)(111,118,149,146)(112,145,150,117)(113,116,141,144)(114,143,142,115)(119,120,147,148) );
G=PermutationGroup([[(1,17,22,153,123,86,60,95),(2,18,23,154,124,87,51,96),(3,19,24,155,125,88,52,97),(4,20,25,156,126,89,53,98),(5,11,26,157,127,90,54,99),(6,12,27,158,128,81,55,100),(7,13,28,159,129,82,56,91),(8,14,29,160,130,83,57,92),(9,15,30,151,121,84,58,93),(10,16,21,152,122,85,59,94),(31,142,104,41,69,114,132,79),(32,143,105,42,70,115,133,80),(33,144,106,43,61,116,134,71),(34,145,107,44,62,117,135,72),(35,146,108,45,63,118,136,73),(36,147,109,46,64,119,137,74),(37,148,110,47,65,120,138,75),(38,149,101,48,66,111,139,76),(39,150,102,49,67,112,140,77),(40,141,103,50,68,113,131,78)], [(1,148),(2,111),(3,150),(4,113),(5,142),(6,115),(7,144),(8,117),(9,146),(10,119),(11,31),(12,70),(13,33),(14,62),(15,35),(16,64),(17,37),(18,66),(19,39),(20,68),(21,46),(22,75),(23,48),(24,77),(25,50),(26,79),(27,42),(28,71),(29,44),(30,73),(32,81),(34,83),(36,85),(38,87),(40,89),(41,54),(43,56),(45,58),(47,60),(49,52),(51,76),(53,78),(55,80),(57,72),(59,74),(61,82),(63,84),(65,86),(67,88),(69,90),(91,106),(92,135),(93,108),(94,137),(95,110),(96,139),(97,102),(98,131),(99,104),(100,133),(101,154),(103,156),(105,158),(107,160),(109,152),(112,125),(114,127),(116,129),(118,121),(120,123),(122,147),(124,149),(126,141),(128,143),(130,145),(132,157),(134,159),(136,151),(138,153),(140,155)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,123,122),(2,121,124,9),(3,8,125,130),(4,129,126,7),(5,6,127,128),(11,12,90,81),(13,20,82,89),(14,88,83,19),(15,18,84,87),(16,86,85,17),(21,60,59,22),(23,58,51,30),(24,29,52,57),(25,56,53,28),(26,27,54,55),(31,70,69,32),(33,68,61,40),(34,39,62,67),(35,66,63,38),(36,37,64,65),(41,80,79,42),(43,78,71,50),(44,49,72,77),(45,76,73,48),(46,47,74,75),(91,98,159,156),(92,155,160,97),(93,96,151,154),(94,153,152,95),(99,100,157,158),(101,108,139,136),(102,135,140,107),(103,106,131,134),(104,133,132,105),(109,110,137,138),(111,118,149,146),(112,145,150,117),(113,116,141,144),(114,143,142,115),(119,120,147,148)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 4 | 4 | 10 | 10 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | D10 | D10 | Q8○D8 | D4×D5 | D4×D5 | D20.47D4 |
kernel | D20.47D4 | D20.3C4 | C2×Dic20 | D8⋊3D5 | SD16⋊D5 | D5×Q16 | D4.9D10 | C5×C4○D8 | D4.10D10 | Dic10 | D20 | C5⋊D4 | C4○D8 | C2×C8 | D8 | SD16 | Q16 | C4○D4 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 8 |
Matrix representation of D20.47D4 ►in GL4(𝔽41) generated by
0 | 0 | 33 | 8 |
0 | 0 | 33 | 0 |
0 | 36 | 24 | 0 |
5 | 36 | 0 | 24 |
5 | 29 | 31 | 28 |
12 | 36 | 10 | 18 |
6 | 18 | 34 | 12 |
24 | 24 | 27 | 7 |
39 | 16 | 23 | 15 |
25 | 25 | 6 | 38 |
7 | 7 | 32 | 25 |
1 | 14 | 5 | 27 |
39 | 13 | 21 | 15 |
25 | 2 | 18 | 38 |
7 | 35 | 14 | 25 |
1 | 33 | 25 | 27 |
G:=sub<GL(4,GF(41))| [0,0,0,5,0,0,36,36,33,33,24,0,8,0,0,24],[5,12,6,24,29,36,18,24,31,10,34,27,28,18,12,7],[39,25,7,1,16,25,7,14,23,6,32,5,15,38,25,27],[39,25,7,1,13,2,35,33,21,18,14,25,15,38,25,27] >;
D20.47D4 in GAP, Magma, Sage, TeX
D_{20}._{47}D_4
% in TeX
G:=Group("D20.47D4");
// GroupNames label
G:=SmallGroup(320,1443);
// by ID
G=gap.SmallGroup(320,1443);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,387,184,570,185,136,438,235,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=a^4*c^-1>;
// generators/relations