Copied to
clipboard

G = D20.44D4order 320 = 26·5

14th non-split extension by D20 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.44D4, C40.7C23, Q16.6D10, C20.26C24, SD16.1D10, Dic10.44D4, D20.19C23, M4(2).18D10, Dic20.1C22, Dic10.19C23, C54(Q8○D8), (D5×Q16)⋊2C2, C5⋊D4.7D4, D4⋊D5.C22, C4.118(D4×D5), C40⋊C2.C22, C8⋊D5.C22, C8.C225D5, C8.7(C22×D5), Q16⋊D54C2, C4○D4.15D10, D10.58(C2×D4), SD16⋊D54C2, C20.247(C2×D4), C8.D104C2, (C2×Q8).92D10, (C8×D5).2C22, C4.26(C23×D5), C22.17(D4×D5), Q8⋊D5.2C22, (C5×SD16).C22, SD163D54C2, D4.8D106C2, D20.2C44C2, (Q8×D5).3C22, C52C8.28C23, Dic5.64(C2×D4), (C4×D5).17C23, D4.19(C22×D5), (C5×D4).19C23, D4.D5.2C22, D4.10D108C2, (C5×Q8).19C23, (C5×Q16).1C22, Q8.19(C22×D5), C5⋊Q16.3C22, (C2×C20).117C23, Q8.10D106C2, C4○D20.32C22, D42D5.3C22, C10.127(C22×D4), Q82D5.3C22, (Q8×C10).153C22, (C5×M4(2)).1C22, (C2×Dic10).207C22, C2.100(C2×D4×D5), (C2×C5⋊Q16)⋊29C2, (C2×C10).72(C2×D4), (C5×C8.C22)⋊4C2, (C5×C4○D4).28C22, (C2×C4).101(C22×D5), (C2×C52C8).182C22, SmallGroup(320,1451)

Series: Derived Chief Lower central Upper central

C1C20 — D20.44D4
C1C5C10C20C4×D5C4○D20Q8.10D10 — D20.44D4
C5C10C20 — D20.44D4
C1C2C2×C4C8.C22

Generators and relations for D20.44D4
 G = < a,b,c,d | a20=b2=1, c4=d2=a10, bab=a-1, cac-1=dad-1=a11, cbc-1=dbd-1=a10b, dcd-1=a10c3 >

Subgroups: 870 in 248 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, D5, C10, C10, C2×C8, M4(2), M4(2), D8, SD16, SD16, Q16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C8○D4, C2×Q16, C4○D8, C8.C22, C8.C22, 2- 1+4, C52C8, C40, Dic10, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C5×Q8, Q8○D8, C8×D5, C8⋊D5, C40⋊C2, Dic20, C2×C52C8, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C5⋊Q16, C5×M4(2), C5×SD16, C5×Q16, C2×Dic10, C2×Dic10, C4○D20, C4○D20, D42D5, D42D5, Q8×D5, Q8×D5, Q82D5, Q82D5, Q8×C10, C5×C4○D4, D20.2C4, C8.D10, SD16⋊D5, SD163D5, D5×Q16, Q16⋊D5, C2×C5⋊Q16, D4.8D10, C5×C8.C22, Q8.10D10, D4.10D10, D20.44D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, Q8○D8, D4×D5, C23×D5, C2×D4×D5, D20.44D4

Smallest permutation representation of D20.44D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 71)(2 70)(3 69)(4 68)(5 67)(6 66)(7 65)(8 64)(9 63)(10 62)(11 61)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 147)(22 146)(23 145)(24 144)(25 143)(26 142)(27 141)(28 160)(29 159)(30 158)(31 157)(32 156)(33 155)(34 154)(35 153)(36 152)(37 151)(38 150)(39 149)(40 148)(41 114)(42 113)(43 112)(44 111)(45 110)(46 109)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 120)(56 119)(57 118)(58 117)(59 116)(60 115)(81 123)(82 122)(83 121)(84 140)(85 139)(86 138)(87 137)(88 136)(89 135)(90 134)(91 133)(92 132)(93 131)(94 130)(95 129)(96 128)(97 127)(98 126)(99 125)(100 124)
(1 39 108 83 11 29 118 93)(2 30 109 94 12 40 119 84)(3 21 110 85 13 31 120 95)(4 32 111 96 14 22 101 86)(5 23 112 87 15 33 102 97)(6 34 113 98 16 24 103 88)(7 25 114 89 17 35 104 99)(8 36 115 100 18 26 105 90)(9 27 116 91 19 37 106 81)(10 38 117 82 20 28 107 92)(41 125 75 143 51 135 65 153)(42 136 76 154 52 126 66 144)(43 127 77 145 53 137 67 155)(44 138 78 156 54 128 68 146)(45 129 79 147 55 139 69 157)(46 140 80 158 56 130 70 148)(47 131 61 149 57 121 71 159)(48 122 62 160 58 132 72 150)(49 133 63 151 59 123 73 141)(50 124 64 142 60 134 74 152)
(1 43 11 53)(2 54 12 44)(3 45 13 55)(4 56 14 46)(5 47 15 57)(6 58 16 48)(7 49 17 59)(8 60 18 50)(9 51 19 41)(10 42 20 52)(21 157 31 147)(22 148 32 158)(23 159 33 149)(24 150 34 160)(25 141 35 151)(26 152 36 142)(27 143 37 153)(28 154 38 144)(29 145 39 155)(30 156 40 146)(61 112 71 102)(62 103 72 113)(63 114 73 104)(64 105 74 115)(65 116 75 106)(66 107 76 117)(67 118 77 108)(68 109 78 119)(69 120 79 110)(70 111 80 101)(81 135 91 125)(82 126 92 136)(83 137 93 127)(84 128 94 138)(85 139 95 129)(86 130 96 140)(87 121 97 131)(88 132 98 122)(89 123 99 133)(90 134 100 124)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,160)(29,159)(30,158)(31,157)(32,156)(33,155)(34,154)(35,153)(36,152)(37,151)(38,150)(39,149)(40,148)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,120)(56,119)(57,118)(58,117)(59,116)(60,115)(81,123)(82,122)(83,121)(84,140)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124), (1,39,108,83,11,29,118,93)(2,30,109,94,12,40,119,84)(3,21,110,85,13,31,120,95)(4,32,111,96,14,22,101,86)(5,23,112,87,15,33,102,97)(6,34,113,98,16,24,103,88)(7,25,114,89,17,35,104,99)(8,36,115,100,18,26,105,90)(9,27,116,91,19,37,106,81)(10,38,117,82,20,28,107,92)(41,125,75,143,51,135,65,153)(42,136,76,154,52,126,66,144)(43,127,77,145,53,137,67,155)(44,138,78,156,54,128,68,146)(45,129,79,147,55,139,69,157)(46,140,80,158,56,130,70,148)(47,131,61,149,57,121,71,159)(48,122,62,160,58,132,72,150)(49,133,63,151,59,123,73,141)(50,124,64,142,60,134,74,152), (1,43,11,53)(2,54,12,44)(3,45,13,55)(4,56,14,46)(5,47,15,57)(6,58,16,48)(7,49,17,59)(8,60,18,50)(9,51,19,41)(10,42,20,52)(21,157,31,147)(22,148,32,158)(23,159,33,149)(24,150,34,160)(25,141,35,151)(26,152,36,142)(27,143,37,153)(28,154,38,144)(29,145,39,155)(30,156,40,146)(61,112,71,102)(62,103,72,113)(63,114,73,104)(64,105,74,115)(65,116,75,106)(66,107,76,117)(67,118,77,108)(68,109,78,119)(69,120,79,110)(70,111,80,101)(81,135,91,125)(82,126,92,136)(83,137,93,127)(84,128,94,138)(85,139,95,129)(86,130,96,140)(87,121,97,131)(88,132,98,122)(89,123,99,133)(90,134,100,124)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,160)(29,159)(30,158)(31,157)(32,156)(33,155)(34,154)(35,153)(36,152)(37,151)(38,150)(39,149)(40,148)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,120)(56,119)(57,118)(58,117)(59,116)(60,115)(81,123)(82,122)(83,121)(84,140)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124), (1,39,108,83,11,29,118,93)(2,30,109,94,12,40,119,84)(3,21,110,85,13,31,120,95)(4,32,111,96,14,22,101,86)(5,23,112,87,15,33,102,97)(6,34,113,98,16,24,103,88)(7,25,114,89,17,35,104,99)(8,36,115,100,18,26,105,90)(9,27,116,91,19,37,106,81)(10,38,117,82,20,28,107,92)(41,125,75,143,51,135,65,153)(42,136,76,154,52,126,66,144)(43,127,77,145,53,137,67,155)(44,138,78,156,54,128,68,146)(45,129,79,147,55,139,69,157)(46,140,80,158,56,130,70,148)(47,131,61,149,57,121,71,159)(48,122,62,160,58,132,72,150)(49,133,63,151,59,123,73,141)(50,124,64,142,60,134,74,152), (1,43,11,53)(2,54,12,44)(3,45,13,55)(4,56,14,46)(5,47,15,57)(6,58,16,48)(7,49,17,59)(8,60,18,50)(9,51,19,41)(10,42,20,52)(21,157,31,147)(22,148,32,158)(23,159,33,149)(24,150,34,160)(25,141,35,151)(26,152,36,142)(27,143,37,153)(28,154,38,144)(29,145,39,155)(30,156,40,146)(61,112,71,102)(62,103,72,113)(63,114,73,104)(64,105,74,115)(65,116,75,106)(66,107,76,117)(67,118,77,108)(68,109,78,119)(69,120,79,110)(70,111,80,101)(81,135,91,125)(82,126,92,136)(83,137,93,127)(84,128,94,138)(85,139,95,129)(86,130,96,140)(87,121,97,131)(88,132,98,122)(89,123,99,133)(90,134,100,124) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,71),(2,70),(3,69),(4,68),(5,67),(6,66),(7,65),(8,64),(9,63),(10,62),(11,61),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,147),(22,146),(23,145),(24,144),(25,143),(26,142),(27,141),(28,160),(29,159),(30,158),(31,157),(32,156),(33,155),(34,154),(35,153),(36,152),(37,151),(38,150),(39,149),(40,148),(41,114),(42,113),(43,112),(44,111),(45,110),(46,109),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,120),(56,119),(57,118),(58,117),(59,116),(60,115),(81,123),(82,122),(83,121),(84,140),(85,139),(86,138),(87,137),(88,136),(89,135),(90,134),(91,133),(92,132),(93,131),(94,130),(95,129),(96,128),(97,127),(98,126),(99,125),(100,124)], [(1,39,108,83,11,29,118,93),(2,30,109,94,12,40,119,84),(3,21,110,85,13,31,120,95),(4,32,111,96,14,22,101,86),(5,23,112,87,15,33,102,97),(6,34,113,98,16,24,103,88),(7,25,114,89,17,35,104,99),(8,36,115,100,18,26,105,90),(9,27,116,91,19,37,106,81),(10,38,117,82,20,28,107,92),(41,125,75,143,51,135,65,153),(42,136,76,154,52,126,66,144),(43,127,77,145,53,137,67,155),(44,138,78,156,54,128,68,146),(45,129,79,147,55,139,69,157),(46,140,80,158,56,130,70,148),(47,131,61,149,57,121,71,159),(48,122,62,160,58,132,72,150),(49,133,63,151,59,123,73,141),(50,124,64,142,60,134,74,152)], [(1,43,11,53),(2,54,12,44),(3,45,13,55),(4,56,14,46),(5,47,15,57),(6,58,16,48),(7,49,17,59),(8,60,18,50),(9,51,19,41),(10,42,20,52),(21,157,31,147),(22,148,32,158),(23,159,33,149),(24,150,34,160),(25,141,35,151),(26,152,36,142),(27,143,37,153),(28,154,38,144),(29,145,39,155),(30,156,40,146),(61,112,71,102),(62,103,72,113),(63,114,73,104),(64,105,74,115),(65,116,75,106),(66,107,76,117),(67,118,77,108),(68,109,78,119),(69,120,79,110),(70,111,80,101),(81,135,91,125),(82,126,92,136),(83,137,93,127),(84,128,94,138),(85,139,95,129),(86,130,96,140),(87,121,97,131),(88,132,98,122),(89,123,99,133),(90,134,100,124)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E10A10B10C10D10E10F20A20B20C20D20E···20J40A40B40C40D
order1222222444444444455888881010101010102020202020···2040404040
size1124101020224441010202020224410102022448844448···88888

44 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10Q8○D8D4×D5D4×D5D20.44D4
kernelD20.44D4D20.2C4C8.D10SD16⋊D5SD163D5D5×Q16Q16⋊D5C2×C5⋊Q16D4.8D10C5×C8.C22Q8.10D10D4.10D10Dic10D20C5⋊D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C5C4C22C1
# reps1112222111111122244222222

Matrix representation of D20.44D4 in GL8(𝔽41)

61000000
400000000
00610000
004000000
0000002912
0000001212
0000122900
0000292900
,
0403570000
400260000
003560000
00160000
0000013232
0000400329
00009901
0000932400
,
3540600000
10060000
3540610000
104000000
00009901
000032910
0000400329
0000013232
,
6135390000
400260000
6135400000
400100000
0000400329
0000013232
00003232040
0000932400

G:=sub<GL(8,GF(41))| [6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,29,0,0,0,0,0,0,29,29,0,0,0,0,29,12,0,0,0,0,0,0,12,12,0,0],[0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,35,2,35,1,0,0,0,0,7,6,6,6,0,0,0,0,0,0,0,0,0,40,9,9,0,0,0,0,1,0,9,32,0,0,0,0,32,32,0,40,0,0,0,0,32,9,1,0],[35,1,35,1,0,0,0,0,40,0,40,0,0,0,0,0,6,0,6,40,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,9,32,40,0,0,0,0,0,9,9,0,1,0,0,0,0,0,1,32,32,0,0,0,0,1,0,9,32],[6,40,6,40,0,0,0,0,1,0,1,0,0,0,0,0,35,2,35,1,0,0,0,0,39,6,40,0,0,0,0,0,0,0,0,0,40,0,32,9,0,0,0,0,0,1,32,32,0,0,0,0,32,32,0,40,0,0,0,0,9,32,40,0] >;

D20.44D4 in GAP, Magma, Sage, TeX

D_{20}._{44}D_4
% in TeX

G:=Group("D20.44D4");
// GroupNames label

G:=SmallGroup(320,1451);
// by ID

G=gap.SmallGroup(320,1451);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,184,570,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=1,c^4=d^2=a^10,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^11,c*b*c^-1=d*b*d^-1=a^10*b,d*c*d^-1=a^10*c^3>;
// generators/relations

׿
×
𝔽