Extensions 1→N→G→Q→1 with N=C2×C8⋊D5 and Q=C2

Direct product G=N×Q with N=C2×C8⋊D5 and Q=C2
dρLabelID
C22×C8⋊D5160C2^2xC8:D5320,1409

Semidirect products G=N:Q with N=C2×C8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C8⋊D5)⋊1C2 = Q16⋊D10φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5):1C2320,1440
(C2×C8⋊D5)⋊2C2 = C82D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):2C2320,492
(C2×C8⋊D5)⋊3C2 = C408D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):3C2320,801
(C2×C8⋊D5)⋊4C2 = C2×D40⋊C2φ: C2/C1C2 ⊆ Out C2×C8⋊D580(C2xC8:D5):4C2320,1431
(C2×C8⋊D5)⋊5C2 = C2×SD16⋊D5φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):5C2320,1432
(C2×C8⋊D5)⋊6C2 = C83D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):6C2320,513
(C2×C8⋊D5)⋊7C2 = C4012D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):7C2320,786
(C2×C8⋊D5)⋊8C2 = C2×D8⋊D5φ: C2/C1C2 ⊆ Out C2×C8⋊D580(C2xC8:D5):8C2320,1427
(C2×C8⋊D5)⋊9C2 = C2×Q16⋊D5φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):9C2320,1436
(C2×C8⋊D5)⋊10C2 = C86D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):10C2320,315
(C2×C8⋊D5)⋊11C2 = D107M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D580(C2xC8:D5):11C2320,353
(C2×C8⋊D5)⋊12C2 = C22⋊C8⋊D5φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):12C2320,354
(C2×C8⋊D5)⋊13C2 = Dic52M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):13C2320,356
(C2×C8⋊D5)⋊14C2 = C52C826D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):14C2320,357
(C2×C8⋊D5)⋊15C2 = (D4×D5)⋊C4φ: C2/C1C2 ⊆ Out C2×C8⋊D580(C2xC8:D5):15C2320,397
(C2×C8⋊D5)⋊16C2 = D4⋊(C4×D5)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):16C2320,398
(C2×C8⋊D5)⋊17C2 = C52C8⋊D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):17C2320,407
(C2×C8⋊D5)⋊18C2 = C5⋊(C82D4)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):18C2320,409
(C2×C8⋊D5)⋊19C2 = Q8⋊(C4×D5)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):19C2320,430
(C2×C8⋊D5)⋊20C2 = C5⋊(C8⋊D4)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):20C2320,439
(C2×C8⋊D5)⋊21C2 = D105M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):21C2320,463
(C2×C8⋊D5)⋊22C2 = C206M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):22C2320,465
(C2×C8⋊D5)⋊23C2 = C4032D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):23C2320,738
(C2×C8⋊D5)⋊24C2 = C89D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):24C2320,333
(C2×C8⋊D5)⋊25C2 = C4018D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):25C2320,755
(C2×C8⋊D5)⋊26C2 = C2×D5×M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D580(C2xC8:D5):26C2320,1415
(C2×C8⋊D5)⋊27C2 = C2×D20.2C4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5):27C2320,1416
(C2×C8⋊D5)⋊28C2 = C20.72C24φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5):28C2320,1422
(C2×C8⋊D5)⋊29C2 = C2×D20.3C4φ: trivial image160(C2xC8:D5):29C2320,1410

Non-split extensions G=N.Q with N=C2×C8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C8⋊D5).1C2 = M4(2).25D10φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).1C2320,520
(C2×C8⋊D5).2C2 = C8⋊(C4×D5)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).2C2320,488
(C2×C8⋊D5).3C2 = C8.2D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).3C2320,495
(C2×C8⋊D5).4C2 = C4020(C2×C4)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).4C2320,508
(C2×C8⋊D5).5C2 = C40.36D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).5C2320,816
(C2×C8⋊D5).6C2 = C20.10M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).6C2320,229
(C2×C8⋊D5).7C2 = (C2×C8)⋊F5φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).7C2320,232
(C2×C8⋊D5).8C2 = C20.24C42φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).8C2320,233
(C2×C8⋊D5).9C2 = C20.25C42φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).9C2320,235
(C2×C8⋊D5).10C2 = (Q8×D5)⋊C4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).10C2320,429
(C2×C8⋊D5).11C2 = C52C8.D4φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).11C2320,443
(C2×C8⋊D5).12C2 = C205M4(2)φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).12C2320,464
(C2×C8⋊D5).13C2 = C42.30D10φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).13C2320,466
(C2×C8⋊D5).14C2 = C8.25D20φ: C2/C1C2 ⊆ Out C2×C8⋊D5804(C2xC8:D5).14C2320,72
(C2×C8⋊D5).15C2 = D10.6C42φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).15C2320,334
(C2×C8⋊D5).16C2 = D10.7C42φ: C2/C1C2 ⊆ Out C2×C8⋊D5160(C2xC8:D5).16C2320,335
(C2×C8⋊D5).17C2 = C4×C8⋊D5φ: trivial image160(C2xC8:D5).17C2320,314
(C2×C8⋊D5).18C2 = D10.5C42φ: trivial image160(C2xC8:D5).18C2320,316

׿
×
𝔽