Copied to
clipboard

G = C52C8.D4order 320 = 26·5

1st non-split extension by C52C8 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C52C8.1D4, C4⋊C4.30D10, C4.169(D4×D5), C51(C8.D4), Q8⋊C419D5, C20.127(C2×D4), (C2×C8).178D10, (C2×Q8).22D10, C20.22(C4○D4), C4.35(C4○D20), D102Q8.4C2, D103Q8.7C2, C20.Q813C2, (C2×Dic5).42D4, (C22×D5).30D4, C22.206(D4×D5), C20.44D425C2, C10.26(C4⋊D4), (C2×C20).256C23, (C2×C40).203C22, (Q8×C10).39C22, C2.29(D10⋊D4), C2.18(Q16⋊D5), C2.19(SD16⋊D5), C10.64(C8.C22), C4⋊Dic5.100C22, (C2×Dic10).78C22, (C2×C5⋊Q16)⋊6C2, (C2×C4×D5).32C22, (C5×Q8⋊C4)⋊25C2, (C2×C10).269(C2×D4), (C2×C8⋊D5).11C2, (C5×C4⋊C4).57C22, (C2×C52C8).46C22, (C2×C4).363(C22×D5), SmallGroup(320,443)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C52C8.D4
C1C5C10C20C2×C20C2×C4×D5D102Q8 — C52C8.D4
C5C10C2×C20 — C52C8.D4
C1C22C2×C4Q8⋊C4

Generators and relations for C52C8.D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=dad=a-1, ac=ca, cbc-1=b3, dbd=b5, dcd=b4c-1 >

Subgroups: 438 in 110 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), Q16, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, Q8⋊C4, Q8⋊C4, C4.Q8, C22⋊Q8, C2×M4(2), C2×Q16, C52C8, C40, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C8.D4, C8⋊D5, C2×C52C8, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C5⋊Q16, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, Q8×C10, C20.Q8, C20.44D4, C5×Q8⋊C4, D102Q8, C2×C8⋊D5, C2×C5⋊Q16, D103Q8, C52C8.D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C8.C22, C22×D5, C8.D4, C4○D20, D4×D5, D10⋊D4, SD16⋊D5, Q16⋊D5, C52C8.D4

Smallest permutation representation of C52C8.D4
On 160 points
Generators in S160
(1 52 35 149 110)(2 111 150 36 53)(3 54 37 151 112)(4 105 152 38 55)(5 56 39 145 106)(6 107 146 40 49)(7 50 33 147 108)(8 109 148 34 51)(9 95 124 71 77)(10 78 72 125 96)(11 89 126 65 79)(12 80 66 127 90)(13 91 128 67 73)(14 74 68 121 92)(15 93 122 69 75)(16 76 70 123 94)(17 45 159 83 113)(18 114 84 160 46)(19 47 153 85 115)(20 116 86 154 48)(21 41 155 87 117)(22 118 88 156 42)(23 43 157 81 119)(24 120 82 158 44)(25 97 143 61 134)(26 135 62 144 98)(27 99 137 63 136)(28 129 64 138 100)(29 101 139 57 130)(30 131 58 140 102)(31 103 141 59 132)(32 133 60 142 104)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 12 58 48)(2 15 59 43)(3 10 60 46)(4 13 61 41)(5 16 62 44)(6 11 63 47)(7 14 64 42)(8 9 57 45)(17 51 77 139)(18 54 78 142)(19 49 79 137)(20 52 80 140)(21 55 73 143)(22 50 74 138)(23 53 75 141)(24 56 76 144)(25 87 152 128)(26 82 145 123)(27 85 146 126)(28 88 147 121)(29 83 148 124)(30 86 149 127)(31 81 150 122)(32 84 151 125)(33 68 100 118)(34 71 101 113)(35 66 102 116)(36 69 103 119)(37 72 104 114)(38 67 97 117)(39 70 98 120)(40 65 99 115)(89 136 153 107)(90 131 154 110)(91 134 155 105)(92 129 156 108)(93 132 157 111)(94 135 158 106)(95 130 159 109)(96 133 160 112)
(1 62)(2 59)(3 64)(4 61)(5 58)(6 63)(7 60)(8 57)(9 13)(11 15)(17 155)(18 160)(19 157)(20 154)(21 159)(22 156)(23 153)(24 158)(25 38)(26 35)(27 40)(28 37)(29 34)(30 39)(31 36)(32 33)(41 45)(43 47)(49 136)(50 133)(51 130)(52 135)(53 132)(54 129)(55 134)(56 131)(65 122)(66 127)(67 124)(68 121)(69 126)(70 123)(71 128)(72 125)(73 95)(74 92)(75 89)(76 94)(77 91)(78 96)(79 93)(80 90)(81 115)(82 120)(83 117)(84 114)(85 119)(86 116)(87 113)(88 118)(97 152)(98 149)(99 146)(100 151)(101 148)(102 145)(103 150)(104 147)(105 143)(106 140)(107 137)(108 142)(109 139)(110 144)(111 141)(112 138)

G:=sub<Sym(160)| (1,52,35,149,110)(2,111,150,36,53)(3,54,37,151,112)(4,105,152,38,55)(5,56,39,145,106)(6,107,146,40,49)(7,50,33,147,108)(8,109,148,34,51)(9,95,124,71,77)(10,78,72,125,96)(11,89,126,65,79)(12,80,66,127,90)(13,91,128,67,73)(14,74,68,121,92)(15,93,122,69,75)(16,76,70,123,94)(17,45,159,83,113)(18,114,84,160,46)(19,47,153,85,115)(20,116,86,154,48)(21,41,155,87,117)(22,118,88,156,42)(23,43,157,81,119)(24,120,82,158,44)(25,97,143,61,134)(26,135,62,144,98)(27,99,137,63,136)(28,129,64,138,100)(29,101,139,57,130)(30,131,58,140,102)(31,103,141,59,132)(32,133,60,142,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,58,48)(2,15,59,43)(3,10,60,46)(4,13,61,41)(5,16,62,44)(6,11,63,47)(7,14,64,42)(8,9,57,45)(17,51,77,139)(18,54,78,142)(19,49,79,137)(20,52,80,140)(21,55,73,143)(22,50,74,138)(23,53,75,141)(24,56,76,144)(25,87,152,128)(26,82,145,123)(27,85,146,126)(28,88,147,121)(29,83,148,124)(30,86,149,127)(31,81,150,122)(32,84,151,125)(33,68,100,118)(34,71,101,113)(35,66,102,116)(36,69,103,119)(37,72,104,114)(38,67,97,117)(39,70,98,120)(40,65,99,115)(89,136,153,107)(90,131,154,110)(91,134,155,105)(92,129,156,108)(93,132,157,111)(94,135,158,106)(95,130,159,109)(96,133,160,112), (1,62)(2,59)(3,64)(4,61)(5,58)(6,63)(7,60)(8,57)(9,13)(11,15)(17,155)(18,160)(19,157)(20,154)(21,159)(22,156)(23,153)(24,158)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)(41,45)(43,47)(49,136)(50,133)(51,130)(52,135)(53,132)(54,129)(55,134)(56,131)(65,122)(66,127)(67,124)(68,121)(69,126)(70,123)(71,128)(72,125)(73,95)(74,92)(75,89)(76,94)(77,91)(78,96)(79,93)(80,90)(81,115)(82,120)(83,117)(84,114)(85,119)(86,116)(87,113)(88,118)(97,152)(98,149)(99,146)(100,151)(101,148)(102,145)(103,150)(104,147)(105,143)(106,140)(107,137)(108,142)(109,139)(110,144)(111,141)(112,138)>;

G:=Group( (1,52,35,149,110)(2,111,150,36,53)(3,54,37,151,112)(4,105,152,38,55)(5,56,39,145,106)(6,107,146,40,49)(7,50,33,147,108)(8,109,148,34,51)(9,95,124,71,77)(10,78,72,125,96)(11,89,126,65,79)(12,80,66,127,90)(13,91,128,67,73)(14,74,68,121,92)(15,93,122,69,75)(16,76,70,123,94)(17,45,159,83,113)(18,114,84,160,46)(19,47,153,85,115)(20,116,86,154,48)(21,41,155,87,117)(22,118,88,156,42)(23,43,157,81,119)(24,120,82,158,44)(25,97,143,61,134)(26,135,62,144,98)(27,99,137,63,136)(28,129,64,138,100)(29,101,139,57,130)(30,131,58,140,102)(31,103,141,59,132)(32,133,60,142,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,58,48)(2,15,59,43)(3,10,60,46)(4,13,61,41)(5,16,62,44)(6,11,63,47)(7,14,64,42)(8,9,57,45)(17,51,77,139)(18,54,78,142)(19,49,79,137)(20,52,80,140)(21,55,73,143)(22,50,74,138)(23,53,75,141)(24,56,76,144)(25,87,152,128)(26,82,145,123)(27,85,146,126)(28,88,147,121)(29,83,148,124)(30,86,149,127)(31,81,150,122)(32,84,151,125)(33,68,100,118)(34,71,101,113)(35,66,102,116)(36,69,103,119)(37,72,104,114)(38,67,97,117)(39,70,98,120)(40,65,99,115)(89,136,153,107)(90,131,154,110)(91,134,155,105)(92,129,156,108)(93,132,157,111)(94,135,158,106)(95,130,159,109)(96,133,160,112), (1,62)(2,59)(3,64)(4,61)(5,58)(6,63)(7,60)(8,57)(9,13)(11,15)(17,155)(18,160)(19,157)(20,154)(21,159)(22,156)(23,153)(24,158)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)(41,45)(43,47)(49,136)(50,133)(51,130)(52,135)(53,132)(54,129)(55,134)(56,131)(65,122)(66,127)(67,124)(68,121)(69,126)(70,123)(71,128)(72,125)(73,95)(74,92)(75,89)(76,94)(77,91)(78,96)(79,93)(80,90)(81,115)(82,120)(83,117)(84,114)(85,119)(86,116)(87,113)(88,118)(97,152)(98,149)(99,146)(100,151)(101,148)(102,145)(103,150)(104,147)(105,143)(106,140)(107,137)(108,142)(109,139)(110,144)(111,141)(112,138) );

G=PermutationGroup([[(1,52,35,149,110),(2,111,150,36,53),(3,54,37,151,112),(4,105,152,38,55),(5,56,39,145,106),(6,107,146,40,49),(7,50,33,147,108),(8,109,148,34,51),(9,95,124,71,77),(10,78,72,125,96),(11,89,126,65,79),(12,80,66,127,90),(13,91,128,67,73),(14,74,68,121,92),(15,93,122,69,75),(16,76,70,123,94),(17,45,159,83,113),(18,114,84,160,46),(19,47,153,85,115),(20,116,86,154,48),(21,41,155,87,117),(22,118,88,156,42),(23,43,157,81,119),(24,120,82,158,44),(25,97,143,61,134),(26,135,62,144,98),(27,99,137,63,136),(28,129,64,138,100),(29,101,139,57,130),(30,131,58,140,102),(31,103,141,59,132),(32,133,60,142,104)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,12,58,48),(2,15,59,43),(3,10,60,46),(4,13,61,41),(5,16,62,44),(6,11,63,47),(7,14,64,42),(8,9,57,45),(17,51,77,139),(18,54,78,142),(19,49,79,137),(20,52,80,140),(21,55,73,143),(22,50,74,138),(23,53,75,141),(24,56,76,144),(25,87,152,128),(26,82,145,123),(27,85,146,126),(28,88,147,121),(29,83,148,124),(30,86,149,127),(31,81,150,122),(32,84,151,125),(33,68,100,118),(34,71,101,113),(35,66,102,116),(36,69,103,119),(37,72,104,114),(38,67,97,117),(39,70,98,120),(40,65,99,115),(89,136,153,107),(90,131,154,110),(91,134,155,105),(92,129,156,108),(93,132,157,111),(94,135,158,106),(95,130,159,109),(96,133,160,112)], [(1,62),(2,59),(3,64),(4,61),(5,58),(6,63),(7,60),(8,57),(9,13),(11,15),(17,155),(18,160),(19,157),(20,154),(21,159),(22,156),(23,153),(24,158),(25,38),(26,35),(27,40),(28,37),(29,34),(30,39),(31,36),(32,33),(41,45),(43,47),(49,136),(50,133),(51,130),(52,135),(53,132),(54,129),(55,134),(56,131),(65,122),(66,127),(67,124),(68,121),(69,126),(70,123),(71,128),(72,125),(73,95),(74,92),(75,89),(76,94),(77,91),(78,96),(79,93),(80,90),(81,115),(82,120),(83,117),(84,114),(85,119),(86,116),(87,113),(88,118),(97,152),(98,149),(99,146),(100,151),(101,148),(102,145),(103,150),(104,147),(105,143),(106,140),(107,137),(108,142),(109,139),(110,144),(111,141),(112,138)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222444444455888810···102020202020···2040···40
size1111202288204040224420202···244448···84···4

44 irreducible representations

dim1111111122222222244444
type+++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D5C4○D4D10D10D10C4○D20C8.C22D4×D5D4×D5SD16⋊D5Q16⋊D5
kernelC52C8.D4C20.Q8C20.44D4C5×Q8⋊C4D102Q8C2×C8⋊D5C2×C5⋊Q16D103Q8C52C8C2×Dic5C22×D5Q8⋊C4C20C4⋊C4C2×C8C2×Q8C4C10C4C22C2C2
# reps1111111121122222822244

Matrix representation of C52C8.D4 in GL6(𝔽41)

100000
010000
0004000
001600
00180640
0002310
,
3200000
690000
003131016
00991627
0026182912
0032142213
,
1540000
5260000
002962729
000231427
004131835
0044012
,
4000000
2810000
0063500
00403500
00233810
00015640

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,18,0,0,0,40,6,0,23,0,0,0,0,6,1,0,0,0,0,40,0],[32,6,0,0,0,0,0,9,0,0,0,0,0,0,31,9,26,32,0,0,31,9,18,14,0,0,0,16,29,22,0,0,16,27,12,13],[15,5,0,0,0,0,4,26,0,0,0,0,0,0,29,0,4,4,0,0,6,23,13,4,0,0,27,14,18,0,0,0,29,27,35,12],[40,28,0,0,0,0,0,1,0,0,0,0,0,0,6,40,23,0,0,0,35,35,38,15,0,0,0,0,1,6,0,0,0,0,0,40] >;

C52C8.D4 in GAP, Magma, Sage, TeX

C_5\rtimes_2C_8.D_4
% in TeX

G:=Group("C5:2C8.D4");
// GroupNames label

G:=SmallGroup(320,443);
// by ID

G=gap.SmallGroup(320,443);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,1094,135,184,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=b^3,d*b*d=b^5,d*c*d=b^4*c^-1>;
// generators/relations

׿
×
𝔽